Skip to main content
  • 73 Accesses

Abstract

After a very slow start, the clinical application of MRS is now beginning to expand. This expansion is in part related to the increased availability in hospital environments of suitable high-field imaging spectrometers with bores up to whole-body diameter. Other factors are also involved. Although the modality has been shown to be effective in certain specialized fields, the more general usefulness of MRS in health care has only recently become apparent. With the primitive methods of signal localization available using a surface coil alone, investigations were initially limited to superficial tissues (e.g., skeletal muscle) and a few special situations. Clinical users of MRS now have a selection of effective localization methods, which show great promise and can be applied to studies with many different nuclei (see Chapter 5). These techniques permit the selection of a volume of interest from a series of 1H magnetic resonance images obtained from contiguous slices and the collection of spectroscopic data only from tissue within that selected volume. The power of these noninvasive biochemical assay methods is greatly enhanced by the fact that, in many tissues, magnetic susceptibility changes are small. This allows much better homogeneity of the field within the volume of interest and hence improved spectroscopic resolution.1 As a result, it is becoming evident that 1H and other nuclei will have a role in the future which will be as important as that of the 31P nucleus. In addition, localization techniques are now available which allow some degree of flexibility not only in the position and size of the sensitive volume but also in its orientation and shape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, I. J., Bryant, D. J., Ross, B. D., etal.: Spectral resolution in clinical magnetic resonance spectroscopy, Magn. Resort. Med. 5: 186–190, 1987.

    CAS  Google Scholar 

  2. Radda, G. K.: The use of NMR spectroscopy for the understanding of disease, Science 233: 640–645, 1986.

    PubMed  CAS  Google Scholar 

  3. Chance, B., Eleff, S., and Leigh, J. S.: Noninvasive, nondestructive approaches to cell bioenergetics, Proc. Natl. Acad. Sci. USA 77: 7430–7434, 1980.

    PubMed  CAS  Google Scholar 

  4. Ross, B. D., Radda, G. K., Gadian, D. G., et al.: Examination of a case of suspected McArdle’s syndrome by 31P nuclear magnetic resonance, N. Engl. J. Med. 304: 1338–1342, 1981.

    PubMed  CAS  Google Scholar 

  5. Chance, B., Eleff, S., Leigh, J. S., et al.: Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle. A gated 31P NMR study, Proc. Natl. Acad. Sci. USA 78: 6714–6718, 1981.

    PubMed  CAS  Google Scholar 

  6. Gadian, D. G., Radda, G. K., Ross, B. D., etal.: Examination of a myopathy by phosphorus nuclear magnetic resonance, Lancet 2: 774–775, 1981.

    PubMed  CAS  Google Scholar 

  7. Cady, E. B., Costello, A. M,. de L., Dawson, M. J. et al.: Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy, Lancet 1: 1059–1062, 1983.

    PubMed  CAS  Google Scholar 

  8. Bottomley, P. A., Hart, H. R., Edelstein, W. A., etal.: NMR imaging/speetroscopy system to study both anatomy and metabolism, Lancet 2: 273–274, 1983.

    PubMed  CAS  Google Scholar 

  9. Pape, K. E. and Wigglesworth, J. S.: Haemmorhage, Ischaemia and the Perinatal Brain, London, Heinemann (Spastics International Medical Publications ), 1979.

    Google Scholar 

  10. Volpe, J. J.: Neurology of the newborn, Philadelphia, Saunders, 1987.

    Google Scholar 

  11. Younkin, D. P., Delivoria-Papadopolous, M., Leonard, J., etal.: Unique aspects of human newborn cerebral metabolism evaluated with 31-P NMR spectroscopy, Ann. Neurol 16: 581–586, 1984.

    PubMed  CAS  Google Scholar 

  12. Hope, P. L., Costello, A. M. de L., Cady, E. B., etal.: Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants, Lancet 2: 366–370, 1984.

    PubMed  CAS  Google Scholar 

  13. Veech, R. L., Harris, R. L., Veloso, D., et al.: Freeze-blowing: A new technique for the study of brain in vivo, J. Neurochem. 20: 183–188, 1973.

    PubMed  CAS  Google Scholar 

  14. Duffy, T. E., Kohle, S. J., and Vannucci, R. C.: Carbohydrate and energy metabolism in perinatal rat brain: Relation to survival in anoxia, J. Neurochem. 24: 271–276, 1975.

    PubMed  CAS  Google Scholar 

  15. Vannucci, R. C. and Vannucci, S. J.: Cerebral carbohydrate metabolism during hypoglycemia and anoxia in newborn rats, Ann. Neurol. 4: 73–79, 1978.

    PubMed  CAS  Google Scholar 

  16. Chapman, A. G., Westerberg, E., and Siesjo, B. K.: The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery, J. Neurochem. 36: 179–189, 1981.

    PubMed  CAS  Google Scholar 

  17. Glonek, T., Kopp, S. J., Kot, E., etal.: P-31 nuclear magnetic resonance analysis of brain: The perchloric acid extract spectrum, J. Neurochem. 39: 1210–1219, 1982.

    PubMed  CAS  Google Scholar 

  18. Gyulai, L., Bolinger, L., Leigh, J. S., et al: Phosphorylethanolamine—the major constituent of the phosphomonoester peak observed by 31P-NMR on developing dog brain, FEBS Lett. 178: 137–142, 1984.

    PubMed  CAS  Google Scholar 

  19. Brenton, D. P., Garrod, P. J., Krywawych, S., etal.: Phosphoethanolamine is major constituent of phosphomonoester peak detected by 31P NMR in newborn brain, Lancet 1: 115, 1985.

    PubMed  CAS  Google Scholar 

  20. Pettegrew, J. W., Kopp, S. J., Dadok, J., et al.: Chemical characterization of a prominent phosphomonoester resonance from mammalian brain. 31P and 1H NMR analysis at 4.7 and 14.1 tesla, J. Mag. Res. 67: 443–450, 1986.

    CAS  Google Scholar 

  21. Agrawal, H. C. and Himwich, W. A.: Amino acids, proteins and monoamines of developing brain, in Himwich, W. A. (ed.): Developmental Neurobiology, Springfield, 111., C. C. Thomas, 1970, p. 298.

    Google Scholar 

  22. Okumura, N., Otsuki, S., and Kameyama, A.: Studies on free amino acids in human brain, J. Biochem. (Tokyo) 47: 315–320, 1960.

    Google Scholar 

  23. Chapman, A. G., Westerberg, E., and Siesjo, B. K.: The metabolism of purine and pyrimidine nucleotides in rat cortex during insulin-induced hypoglycemia and recovery, J. Neurochem. 36: 179–189, 1981.

    PubMed  CAS  Google Scholar 

  24. Gonzalez-Mendez, R., Litt, L., Koretsky, A. P., et al.: Comparison of 31P NMR spectra of in vivo rat brain using convolution difference and saturation with a surface coil. Source of the broad component in the brain spectrum, J. Mag. Res. 57: 526–533, 1984.

    CAS  Google Scholar 

  25. Stubbs, M., Vanstapel, F., Rodrigues, L. M., et al.: Phosphate metabolites in rat skin, NMR in Biomedicine 1: 50–55, 1988.

    PubMed  CAS  Google Scholar 

  26. Pettegrew, J. W., Minshew, N. J., Diehl, J., et al.: Anatomical considerations for interpreting topical 31P-NMR, Lancet 2: 913, 1983.

    PubMed  CAS  Google Scholar 

  27. Tofts, P. S., Cady, E. B., Delpy, D. T., et al.: Surface coil NMR spectroscopy of brain, Lancet 1: 459, 1984.

    PubMed  CAS  Google Scholar 

  28. Evelhoch, J. L., Crowley, M. G., and Ackerman, J. J. H.: Signal-to-noise optimization and observed volume localization with surface coils, J. Mag. Res. 56: 110–124, 1984.

    CAS  Google Scholar 

  29. Bottomley, P. A., Hart, H. R., Edelstein, W. A., et al: Anatomy and metabolism of the normal human brain studied by magnetic resonance at 1.5 tesla, Radiology 150: 441–446, 1984.

    PubMed  CAS  Google Scholar 

  30. Bottomley, P. A., Foster, T. B., and Darrow, R. D.: Depth-resolved surface-coil spectroscopy (DRESS) for in vivo 1H, 31P, and 13C NMR, J. Mag. Res. 59: 338–342, 1984.

    CAS  Google Scholar 

  31. Bottomley, P. A., Edelstein, W. A., Hart, H. R., et al: Spatial localization in 31P and 13C NMR spectroscopy in vivo using surface coils, Magn. Resort. Med. 1: 410–413, 1984.

    CAS  Google Scholar 

  32. Brindle, K. M., Smith, M. B., Rajagopalan, B., etal.: Spectral editing in 31P NMR spectra of human brain, J. Mag. Res. 61: 559–563, 1985.

    CAS  Google Scholar 

  33. Ng, T. C., Majors, A. W., and Meany, T. F.: In vivo MR spectroscopy of human subjects with a 1.4-T whole body MR imager, Radiology 158: 517–520, 1986.

    PubMed  CAS  Google Scholar 

  34. Oberhaensli, R. D., Galloway, G. J., Hilton-Jones, D., et al.: The study of human organs by phosphorus-31 topical magnetic resonance spectroscopy, Br. J. Radiol. 60: 367–373, 1987.

    PubMed  CAS  Google Scholar 

  35. Bailes, D. R., Bryant, D. J., Bydder, G. M., etal: Localized phosphorus-31 NMR spectroscopy of normal and pathological human organs in vivo using phase encoded techniques, J. Mag. Res. 74: 158–170, 1987.

    CAS  Google Scholar 

  36. Tofts, P. S. and Wray, S.: Changes in brain phosphorus metabolites during the post-natal development of the rat, J. Physiol. (London) 359: 417–429, 1985.

    CAS  Google Scholar 

  37. Reynolds, E. O. R., Wyatt, J. S., Azzopardi, D., etal.: New non-invasive methods for assessing brain oxygenation and haemodynamics, Br. Med. Bull. 44: 1052–1075, 1988.

    PubMed  CAS  Google Scholar 

  38. Azzopardi, D., Wyatt, J. S., and Hamilton, P. A.: Phosphorus metabolites and intracellular pH in the brains of normal and small-for-gestational age infants investigated by magnetic resonance spectroscopy, Pediatr. Res. 25: 440–444, 1989.

    PubMed  CAS  Google Scholar 

  39. Minton, S. D., Steichen, J. J., and Tsang, R. C.: Bone mineral content in term and preterm appropriate-for-gestational age infants, J. Pediatr. 95: 1037–1042, 1979.

    PubMed  CAS  Google Scholar 

  40. Dobbing, J. and Sands, J.: Quantitative growth and development of human brain, Arch. Dis. Child. 48: 757–767, 1973.

    PubMed  CAS  Google Scholar 

  41. Lawson, B., Anday, E., Guillet, R., etal.: Brain oxidative phosphorylation following alteration in head position in preterm and term neonates, Pedatr. Res. 22: 302–305, 1987.

    CAS  Google Scholar 

  42. Cady, E. B.: Absolute quantitation of phosphorus metabolites in the cerebral cortex of the newborn human infant and in the forearm muscles of young adults using a double tuned surface coil, J. Mag. Res. (in press), 1990.

    Google Scholar 

  43. Thulborn, K. R. and Ackerman, J. J. H.: Absolute molar concentrations by NMR in inhomogeneous Bl. A scheme for analysis of in vivo metabolites, J. Mag. Res. 55: 357–371, 1983.

    CAS  Google Scholar 

  44. Cohen, M. M. and Lin, S.: Acid soluble phosphates in the developing rabbit brain, J. Neurochem. 9: 345–352, 1962.

    PubMed  CAS  Google Scholar 

  45. Cerdan, S., Subramanian, V. H., Hilberman, M., etal.: 31P NMR detection of mobile dog brain phospholipids, Magn. Reson. Med. 3: 432–439, 1986.

    Google Scholar 

  46. Delpy, D. T., Cope, M. C., Cady, E. B., et al.: Cerebral monitoring in newborn infants by magnetic resonance and near infrared spectroscopy, Scandinavian Journal of Clinical Laboratory Investigation 47 (Suppl. 188): 9–17, 1987.

    Google Scholar 

  47. Hamilton, P. A., Hope, P. L., Cady, E. B., et al.: Impaired energy metabolism in brains of newborn infants with increased cerebral echodensities, Lancet 1: 1242–1246, 1986.

    PubMed  CAS  Google Scholar 

  48. Azzopardi, D., Wyatt, J. S., Cady, E. B., etal.: Prognosis of newborn infants with hypoxic-ischaemic brain injury assessed by phosphorus magnetic resonance spectroscopy, Pediatr. Res. 25: 445–451, 1989.

    PubMed  CAS  Google Scholar 

  49. Griffiths, R.: The Abilities of Babies. London, University of London Press, 1954.

    Google Scholar 

  50. Bottomley, P. A., Smith, L. S., Leue, W. M., etal.: Slice-interleaved depth-resolved surface-coil spectroscopy (SLIT DRESS) for rapid 31P NMR in vivo, J. Mag. Res. 64: 347–351, 1985.

    CAS  Google Scholar 

  51. Bottomley, P. A., Drayer, B. P., and Smith, L. S.: Chronic adult cerebral infarction studied by phosphorus NMR spectroscopy, Radiology 160: 763–766, 1986.

    PubMed  CAS  Google Scholar 

  52. Gordon, R. E., Hanley, P. E., Shaw, D., et al.: Localization of metabolites in animals using 31P topical magnetic resonance, Nature 287: 736–738, 1980.

    PubMed  CAS  Google Scholar 

  53. Gordon, R. E., Hanley, P. E., and Shaw, D.: Topical magnetic resonance, Progress in Nuclear Magnetic Resonance Spectroscopy 15: 1–47, 1982.

    CAS  Google Scholar 

  54. Bottomley, P. A. and Hardy, C. J.: PROGRESS in efficient three-dimensional spatially localized in vivo 31P NMR spectroscopy using multidimensional spatially selective (p) pulses, J. Mag. Res. 74: 550–556, 1987.

    CAS  Google Scholar 

  55. Ordidge, R. J., Connelly, A., and Lohman, J. A. B.: Image selected in-vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy, J. Mag. Res. 66: 283–294, 1986.

    CAS  Google Scholar 

  56. Segebarth, C. M., Baleriaux, D. F., Arnold, D. L., et al.: MR image-guided P-31 MR spectroscopy in the evaluation of brain tumor treatment, Radiology 165: 215–219, 1987.

    PubMed  CAS  Google Scholar 

  57. Silver, M. S., Joseph, R. I., Chen, C-N., et al.: Selective population inversion in NMR, Nature 310: 681–683, 1984.

    PubMed  CAS  Google Scholar 

  58. Bottomley, P. A., Charles, H. C., Roemer, P. B., et al.: Human in vivo phosphate metabolite imaging with 31P NMR, Magn. Reson. Med. 7: 319–336, 1988.

    PubMed  CAS  Google Scholar 

  59. Hardy, C. J., Bottomley, P. A., Roemer, P. B., et al.: Rapid 31P spectroscopy on a 4-T whole-body system, Magn. Reson. Med. 8: 104–109, 1988.

    PubMed  CAS  Google Scholar 

  60. Lenkinski, R. E., Holland, G. A., Allman, T., et al.: Integrated MR imaging and spectroscopy with chemical shift imaging of P-31 at 1.5 T: Initial experience, Radiology 169: 201–206, 1988.

    PubMed  CAS  Google Scholar 

  61. Tropp, J. S., Sugiura, S., Derby, K. A., et al.: Characterization of MR spectroscopic imaging of the human head and limb at 2.0 T, Radiology 169: 207–212, 1988.

    PubMed  CAS  Google Scholar 

  62. Bottomley, P. A. and Hardy, C. J.: Rapid, reliable in vivo assays of human phosphate metabolites by nuclear magnetic resonance, Clin. Chem. 35: 392–395, 1989.

    CAS  Google Scholar 

  63. Roth, K., Hubesch, B., Meyerhoff, D. J., et al.: Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy, J. Mag. Res. 81: 299–311, 1989.

    CAS  Google Scholar 

  64. Kwee, I. L. and Nakada, T.: Phospholipid profile of the human brain: 31P NMR spectroscopic study, Magn. Reson. Med. 6: 296–299, 1988.

    PubMed  CAS  Google Scholar 

  65. Bottomley, P. A., Edelstein, W. A., Foster, T. H., et al: In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: A window to metabolism? Proc. Natl. Acad. Sci. USA 82: 2148–2152, 1985.

    PubMed  CAS  Google Scholar 

  66. Luyten, P. R. and den Hollander, J. A.: Observation of metabolites in the human brain by MR spectroscopy, Radiology 161: 795–798, 1986.

    PubMed  CAS  Google Scholar 

  67. Hore, P. J.: Solvent suppression in Fourier transform nuclear magnetic resonance, J. Mag. Res. 55: 283–300, 1983.

    CAS  Google Scholar 

  68. Luyten, P. R., Marien, A. D. H., Sijtsma, B., et al.: Solvent-suppressed spatially resolved spectroscopy. An approach to high-resolution NMR on a whole body MR system, J. Mag. Res. 67: 148–155, 1986.

    CAS  Google Scholar 

  69. Barany, M., Langer, B. G., Glick, R. P., et al.: In vivo H-l spectroscopy in humans at 1.5 T, Radiology 167: 839–844, 1988.

    PubMed  CAS  Google Scholar 

  70. Bendall, M. R. and Gordon, R. E.: Depth and refocusing pulses designed for multipulse NMR with surface coils, J. Mag. Res. 53: 365–385, 1983.

    CAS  Google Scholar 

  71. Hanstock, C. C., Rothman, D. L., Jue, T., et al.: Volume-selected proton spectroscopy in the human brain, J. Mag. Res. 77: 583–588, 1988.

    CAS  Google Scholar 

  72. Bodenhausen, G., Freeman, R., and Turner, D. L.: Suppression of artifacts in two-dimensional J spectroscopy, J. Mag. Res. 27: 511–514, 1977.

    CAS  Google Scholar 

  73. Morris, G. A. and Freeman, R.: Selective excitation in Fourier transform nuclear magnetic resonance, J. Mag. Res. 29: 433–462, 1978.

    CAS  Google Scholar 

  74. Hanstock, C. C., Rothman, D. L., Prichard, J. W., et al.: Spatially localized 1H NMR spectra of metabolites in the human brain, Proc. Natl. Acad. Sci. USA 85: 1821–1825, 1988.

    PubMed  CAS  Google Scholar 

  75. Rothman, D. L., Hanstock, C. C., Ogino, T., et al.: Edited 1H human brain spectra of amino acids at 2.1 T, Proceedings, seventh Annual Meeting, Society for Magnetic Resonance in Medicine, San Francisco, 1988, p. 254.

    Google Scholar 

  76. Hanstock, C., Rothman, D., Shulman, R., et al.: Ethanol observed in human brain by proton magnetic resonance spectroscopy, Proceedings, seventh Annual Meeting, Society of Magnetic Resonance in Medicine, San Francisco, 1988, p. 1071.

    Google Scholar 

  77. Frahm, J., Bruhn, H., Gyngell, M. L., etal.: Localized high-resolution proton NMR spectroscopy using stimulated echoes: Initial applications to human brain in vivo, Magn. Reson. Med. 9: 79–93, 1989.

    PubMed  CAS  Google Scholar 

  78. Bruhn, H., Frahm, J., Gyngell, M. L., etal.: Cerebral metabolism in man after acute stroke: New observations using localized proton NMR spectroscopy, Magn. Reson. Med. 9: 126–131, 1989.

    PubMed  CAS  Google Scholar 

  79. Edwards, R. H. T., Dawson, M. J., Wilkie, D. R., et al.: Clinical use of nuclear magnetic resonance in the investigation of myopathy, Lancet 1: 725–731, 1982.

    PubMed  CAS  Google Scholar 

  80. Wilkie, D. R., Dawson, M. J., Edwards, R. H. T., et al.: 31P NMR studies of resting muscle in normal human subjects, in Pollack, G. H. and Sugi, H. (eds.): Contractile Mechanisms in Muscle, New York, Plenum Press, 1984, p. 333.

    Google Scholar 

  81. Radda, G. K., Bore, P. J., and Rajagopalan, B.: Clinical aspects of 31P NMR spectroscopy, Br. Med. Bull. 40: 155–159, 1984.

    PubMed  CAS  Google Scholar 

  82. Edwards, R. H. T., Griffiths, R. D., and Cady, E. B.: Topical magnetic resonance for the study of muscle metabolism in human myopathy, Clin. Physiol. 5: 93–109, 1985.

    PubMed  CAS  Google Scholar 

  83. Kushmerick, M. J., McFarland, E. W., Conley, K. E., et al.: Characterization of fiber types in normal human muscle by 31P-NMR spectroscopy, Proceedings, seventh Annual Meeting, Society of Magnetic Resonance in Medicine, San Francisco, 1988, p. 462.

    Google Scholar 

  84. Aldridge, R., Cady, E. B., Jones, D. A., et al.: Muscle pain after exercise is linked with an inorganic phosphate increase as shown by 31P NMR, Biosci. Rep. 6: 663–667, 1986.

    PubMed  CAS  Google Scholar 

  85. Thomsen, C., Jensen, K. E., Henriksen, O., etal.: Glucose induced thermogenesis in human skeletal muscle studies by 31P MR-spectroscopy, Proceedings, seventh Annual Meeting, Society of Magnetic Resonance in Medicine, San Francisco, 1988, p. 302.

    Google Scholar 

  86. Dawson, M. J.: Quantitative analysis of metabolite levels in normal human subjects by 31P topical magnetic resonance, Biosci. Rep. 2: 727–733, 1982.

    PubMed  CAS  Google Scholar 

  87. Newman, R. J., Bore, P. J., Chan, L., etal.: Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy, Br. Med. J. 284: 1072–1074, 1982.

    CAS  Google Scholar 

  88. Griffiths, R. D., Cady, E. B., Edwards, R. H. T., etal.: Muscle energy metabolism in Duchenne dystrophy studied by 31P-NMR: Controlled trials show no effect of allopurinol or ribose, Muscle and Nerve 8: 760–767, 1985.

    PubMed  CAS  Google Scholar 

  89. Younkin, D. P., Berman, P., Sladky, J., et al.: 31P NMR studies in Duchenne muscular dystrophy: Age-related metabolic changes, Neurology 37: 165–169, 1987.

    PubMed  CAS  Google Scholar 

  90. Hands, L. J., Bore, P. J., Galloway, G., etal.: Muscle metabolism in patients with peripheral vascular disease investigated by 31P nuclear magnetic resonance spectroscopy, Clin. Sci. 71: 283–290, 1986.

    PubMed  CAS  Google Scholar 

  91. Wilson, J. R., Fink, L., Maris, J., etal.: Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance, Circulation 71: 57–62, 1985.

    PubMed  CAS  Google Scholar 

  92. Frostick, S. P., Taylor, D. J., Yonge, R. P., et al.: A study of muscle denervation using phosphorus-31 magnetic resonance spectroscopy. Proceedings, fifth Annual Meeting, Society of Magnetic Resonance in Medicine, Works in Progress, Montreal, 1986, p. 69.

    Google Scholar 

  93. Zochodne, D. W., Thompson, R. T., Driedger, A. A., et al.: Metabolic changes in human muscle denervation: Topical 31P NMR spectroscopy studies, Magn. Reson. Med. 7: 373–383, 1988.

    PubMed  CAS  Google Scholar 

  94. Taylor, D. J., Bore, P. J., Styles, P., et al.: Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study, Molecular Biology in Medicine 1: 77–94, 1983.

    CAS  Google Scholar 

  95. Arnold, D. L., Matthews, P. M., and Radda, G. K.: Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR, Magn. Reson. Med. 1: 307–315, 1984.

    PubMed  CAS  Google Scholar 

  96. Taylor, D. J., Styles, P., Matthews, P. M., et al.: Energetics of human muscle: Exercise-induced ATP depletion, Magn. Reson. Med. 3: 44–54, 1986.

    PubMed  CAS  Google Scholar 

  97. Taylor, D. J., Crowe, M., Bore, P. J., etal.: Examination of the energetics of aging skeletal muscle using nuclear magnetic resonance, Gerontology 30: 2–7, 1984.

    PubMed  CAS  Google Scholar 

  98. Rees, D., Smith, M. B., Harley, J., et al.: In vivo functioning of creatine phosphokinase in human forearm muscle, studied by 31P NMR saturation transfer, Magn. Reson. Med. 9: 39–52, 1989.

    PubMed  CAS  Google Scholar 

  99. Dawson, M. J., Gadian, D. G., and Wilkie, D. R.: Muscular fatigue investigated by phosphorus nuclear magnetic resonance, Nature 274: 861–866, 1978.

    PubMed  CAS  Google Scholar 

  100. Miller, R. G., Giannini, D., Milner-Brown, H. S., et al.: Effects of fatiguing exercise on high-energy phosphates, force, and EMG: Evidence for 3 phases of recovery, Muscle Nerve 10: 810–821, 1987.

    PubMed  CAS  Google Scholar 

  101. Miller, R. G., Boska, M. D., Moussavi, R. S., et al.: 31P nuclear magnetic resonance studies of high energy phosphates and pH in human muscle fatigue, J. Clin. Invest. 81: 1190–1196, 1988.

    PubMed  CAS  Google Scholar 

  102. Cady, E. B., Jones, D. A., Lynn, J., et al.: Changes in force and intracellular metabolites during fatigue of human skeletal muscle, J. Physiol. (London) 418: 311–325, 1989.

    CAS  Google Scholar 

  103. Wilson, J. R., McCully, K. K., Mancini, D. M., et al.: Relationship of muscular fatigue to pH and diprotonated Pi in humans: A 31P-NMR study, Journal of Applied Physiology 64: 2333–2339, 1988.

    PubMed  CAS  Google Scholar 

  104. Wilkie, D. R.: Muscular fatigue: Effects of hydrogen ions and inorganic phosphate, Federal Proceedings 45: 2921–2923, 1986.

    CAS  Google Scholar 

  105. Nosek, T. M., Fender, K. Y., and Godt, R. E.: It is diprotonated inorganic phosphate that depresses force in skinned skeletal muscle fibers, Science 236: 191–193, 1987.

    PubMed  CAS  Google Scholar 

  106. Cady, E. B., Eishove, H., Moll, A., et al.: The metabolic causes of slow relaxation in fatigued human skeletal muscle, J. Physiol. (London) 418: 327–337, 1989.

    CAS  Google Scholar 

  107. Chance, B., Eleff, S., Bank, W., et al.: 31P NMR studies of control of mitochondrial function in phosphofructokinase-deflcient human skeletal muscle, Proc. Natl. Acad. Sci. USA 79: 7714–7718, 1982.

    PubMed  CAS  Google Scholar 

  108. Arnold, D. L., Bore, P. J., Radda, G. K., et al.: Excessive intracellular acidosis of skeletal muscle on exercise in a patient with a post-viral exhaustion/fatigue syndrome, Lancet 1: 1367–1369, 1984.

    PubMed  CAS  Google Scholar 

  109. Wilson, J. R., Fink, L., Maris, J., etal.: Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance, Circulation 71: 57–62, 1985.

    PubMed  CAS  Google Scholar 

  110. Hands, L. J., Bore, P. J., Galloway, G., etal: Muscle metabolism in patients with peripheral vascular disease investigated by 31P nuclear magnetic resonance spectroscopy, Clin. Sci. 71: 283–290, 1986.

    PubMed  CAS  Google Scholar 

  111. Frahm, J., Merboldt, K., and Hanicke, W.: Localized proton spectroscopy using stimulated echoes, J. Mag. Res. 72: 502–508, 1987.

    CAS  Google Scholar 

  112. Narayana, P. A., Jackson, E. F., Hazle, J. D., etal.: In vivo localized proton spectroscopic studies of human gastrocnemius muscle, Magn. Reson. Med. 8: 151–159, 1988.

    PubMed  CAS  Google Scholar 

  113. Pan, J. W., Hamm, J. R., Hetherington, H. P., etal.: Quantitation of lactate in human muscle by 1H NMR, Proceedings, seventh Annual Meeting, Society of Magnetic Resonance in Medicine, San Francisco, 1988, p. 106.

    Google Scholar 

  114. Pan, J. W., Hamm, J. R., Rothman, D. L., etal.: Intracellular pH of human muscle by 1H NMR, Proceedings, seventh Annual Meeting, Society of Magnetic Resonance in Medicine, San Francisco, 1988, p. 251.

    Google Scholar 

  115. Barany, M., Doyle, D. D., Graff, G., etal.: Natural abundance 13C NMR spectra of human muscle, normal and diseased, Magn. Reson. Med. 1: 30–43, 1984.

    PubMed  CAS  Google Scholar 

  116. Avison, M. J., Rothman, D. L., Nadel, E., et al.: Detection of human muscle glycogen by natural abundance 13C NMR, Proc. Natl. Acad. Set USA 85: 1634–1636, 1988.

    CAS  Google Scholar 

  117. Pillai, R. P., Buescher, P. C., Pearse, D. B., etal.: 31P NMR spectroscopy of isolated perfused lungs, Magn. Reson. Med. 3: 467–472, 1986.

    PubMed  CAS  Google Scholar 

  118. Bottomley, P. A.: Noninvasive study of high-energy phosphate metabolism in human heart by depth-resolved 31P NMR spectroscopy, Science 229: 769–772, 1985.

    PubMed  CAS  Google Scholar 

  119. Bottomley, P. A., Herfkens, R. J., Smith, L. S., etal.: Altered phosphate metabolism, in myocardial infarction: P-31 MR spectroscopy, Radiology 165: 703–707, 1987.

    PubMed  CAS  Google Scholar 

  120. Blackledge, M. J., Rajagopalan, B., Oberhaensli, R. D., etal.: Quantitative studies of human cardiac metabolism by 31P rotating-frame NMR, Proc. Natl. Acad. Sci. USA 84: 4283–4287, 1987.

    PubMed  CAS  Google Scholar 

  121. Radda, G. K.: The use of NMR spectroscopy for the understanding of disease, Science 233: 640–645, 1986.

    PubMed  CAS  Google Scholar 

  122. Styles, P., Scott, C. A., and Radda, G. K.: A method for localizing high-resolution NMR spectra from human subjects, Magn. Reson. Med. 2: 402–409, 1985.

    PubMed  CAS  Google Scholar 

  123. Matson, G. B., Twieg, D. B., Karczmar, G. S., et al.: Application of image-guided surface coil P-31 spectroscopy to human liver, heart and kidney, Radiology 169: 541–547, 1988.

    PubMed  CAS  Google Scholar 

  124. Jue, T., Rothman, D. L., Lohman, J. A. B., et al.: Surface coil localization of 31P NMR signals from orthotopic human kidney and liver, Proc. Natl. Acad. Sci. USA 85: 971–974, 1988.

    PubMed  CAS  Google Scholar 

  125. Maris, J. M., Evans, A. E., McLaughlin, A. C., et al.: 31P nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ, N. Engl. J. Med. 312: 1500–1505, 1985.

    PubMed  CAS  Google Scholar 

  126. Oberhaensli, R. D., Galloway, G. J., Taylor, D. J., etal.: Assessment of human liver metabolism by phosphorus-31 magnetic resonance spectroscopy, Br. J. Radiol. 59: 695–699, 1986.

    PubMed  CAS  Google Scholar 

  127. Oberhaensli, R. D., Hilton-Jones, D., Bore, P., etal.: Biochemical investigation of human tumours in vivo with phosphorus-31 magnetic resonance spectroscopy, Lancet 2: 8–11, 1986.

    PubMed  CAS  Google Scholar 

  128. Oberhaensli, R. D., Rajagopalan, B., Taylor, D. J., et al: Study of hereditary fructose intolerance by use of 31P magnetic resonance spectroscopy, Lancet 2: 931–934, 1987.

    PubMed  CAS  Google Scholar 

  129. Sauter, R., Mueller, S., and Weber, H.: Localization in in vivo 31P NMR spectroscopy by combining surface coils and slice-selective saturation, J. Mag. Res. 75: 167–173, 1987.

    CAS  Google Scholar 

  130. Segebarth, C., Luyten, P. R., and den Hollander, A.: Improved depth-selective single surface-coil 31P NMR spectroscopy using a combination of Bi and B0 selection techniques, J. Mag. Res. 75: 345–351, 1987.

    CAS  Google Scholar 

  131. Cox, I. J., Bryant, D. J., Collins, A. G., etal.: Four-dimensional chemical shift MR imaging of phosphorus metabolites of normal and diseased human liver, J. Comput. Assist. Tomogr. 12: 369–376, 1988.

    PubMed  CAS  Google Scholar 

  132. Cox, I. J., Sargentoni, J., Calam, J., etal.: Four-dimensional phosphorus-31 chemicalshift imaging of carcinoid metastases in the liver, NMR in Biomedicine 1: 56–60, 1988.

    PubMed  CAS  Google Scholar 

  133. Jue, T., Lohman, J. A. B., Ordidge, R. J., et al.: Natural abundance 13C NMR spectrum of glycogen in humans, Magn. Reson. Med. 5: 377–379, 1987.

    PubMed  CAS  Google Scholar 

  134. Ross, B., Marshall, V., Smith, M., etal.: Monitoring response to chemotherapy of intact human tumours by 31P nuclear magnetic resonance, Lancet 1: 641–646, 1984.

    PubMed  CAS  Google Scholar 

  135. Chew, W. M., Hricak, H., and McClure, R. D.: In vivo human testicular function assessed by 31P MRS, Proceedings, seventh Annual Meeting, Society of Magnetic Resonance in Medicine, San Francisco, 1988, p. 322.

    Google Scholar 

  136. Achten, E., Van Cauteren, M., Wisanto, A., etal.: Phosphorus-31 magnetic resonance spectroscopy of the human testicle: Normal values and a case of varicocele, Proceedings, seventh Annual Meeting, Society of Magnetic Resonance in Medicine, San Francisco, 1988, p. 58 (works in progress).

    Google Scholar 

  137. Iles, R. A., Hind, A. J., and Chalmers, R. A.: Use of proton nuclear magnetic resonance spectroscopy in detection and study of organic acidurias, Clin. Chem. 31: 1795–1801, 1985.

    PubMed  CAS  Google Scholar 

  138. Iles, R. A., Chalmers, R. A., and Hind, A. J.: Methylmalonic aciduria and propionic acidemia studied by proton nuclear magnetic resonance spectroscopy, Clin. Chim. Acta 173: 173–189, 1986.

    Google Scholar 

  139. Yamaguchi, S., Koda, N., Eto, Y., et al.: Rapid screening of metabolic disease by proton NMR urinalysis, Lancet 2: 284, 1984.

    PubMed  CAS  Google Scholar 

  140. Bales, J. R., Higham, D. P., Howe, I., et al.: Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine, Clin. Chem. 30: 426–432, 1984.

    PubMed  CAS  Google Scholar 

  141. Bales, J. R., Sadler, P. J., Nicholson, J. K., et al.: Urinary excretion of acetaminophen and its metabolites as studied by proton NMR spectroscopy, Clin. Chem. 30: 1631–1636, 1984.

    PubMed  CAS  Google Scholar 

  142. Bales, J. R., Nicholson, J. K., and Sadler, P. J.: Two-dimensional proton nuclear magnetic resonance “maps” of acetaminophen metabolites in human urine, Clin. Chem. 31: 757–762, 1985.

    PubMed  CAS  Google Scholar 

  143. Bales, J. R., Bell, J. D., Nicholson, J. K., et al.: Metabolic profiling of body fluids by proton NMR: Self poisoning episodes with paracetamol (acetaminophen), Magn. Reson. Med. 6: 300–306, 1988.

    PubMed  CAS  Google Scholar 

  144. Gillies, R. J., Powell, D. A., Nelson, T. R., etal.: High resolution proton NMR spectroscopy of human amniotic fluid, Proceedings, fourth Annual Meeting, Society of Magnetic Resonance in Medicine, London, 1985, p. 789.

    Google Scholar 

  145. Bell, J. D., Sadler, P. J., Macleod, A. F., et al.: 1H NMR studies of human blood plasma, FEBS Lett. 219: 239–243, 1987.

    PubMed  CAS  Google Scholar 

  146. Bell, J. D., Brown, J. C. C., Kubal, G., et al.: NMR-invisible lactate in blood plasma, FEBS Lett. 235: 81–86, 1988.

    PubMed  CAS  Google Scholar 

  147. Fossel, E. T., Carr, J. M., and McDonagh, J.: Detection of malignant tumors: Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma, N. Engl. J. Med. 315: 1369–1376, 1986.

    PubMed  CAS  Google Scholar 

  148. Bell, J. D., Brown, J. C. C., Norman, R. E., et al.: Factors affecting 1H NMR spectra of blood plasma: Cancer, diet and freezing, NMR in Biomedicine 1: 90–94, 1988.

    PubMed  CAS  Google Scholar 

  149. Holmes, K. T., Mackinnon, W. B., May, G. L., et al.: Hyperlipidemia as a biochemical basis of magnetic resonance plasma test for cancer, NMR in Biomedicine 1: 44–49, 1989.

    Google Scholar 

  150. Eskelinen, S., Hiltunen, Y., Jokisarri, J., et al.: 1H NMR studies on human plasma lipids from newborn infants, healthy adults, and adults with tumors, Magn. Reson. Med. 9: 35–38, 1989.

    PubMed  CAS  Google Scholar 

  151. Moon, R. B. and Richards, J. H.: Determination of intracellular pH by 31P magnetic resonance, J. Biol Chem. 248: 7276–7278, 1973.

    PubMed  CAS  Google Scholar 

  152. Henderson, T. O., Costello, A. J. R., and Omachi, A.: Phosphate metabolism in intact human erythrocytes: Determination by phosphorus31 nuclear magnetic resonance spectroscopy, Proc. Natl Acad. Sci. USA 71: 2487–2490, 1974.

    PubMed  CAS  Google Scholar 

  153. Costello, A. J., Marshall, W. E., Omachi, A., et al.: Interactions between hemoglobin and organic phosphates investigated with 31P nuclear magnetic resonance spectroscopy and ultrafiltration, Biochim. Biophys. Acta 427: 481–491, 1976.

    PubMed  CAS  Google Scholar 

  154. Gupta, R. K., Benovic, J. L., and Rose, Z. B.: The determination of the free-magnesium level in the human red blood cell by 31P NMR, J. Biol Chem. 253: 6172–6176, 1978.

    PubMed  CAS  Google Scholar 

  155. Tehrani, A. Y., Lam, Y. F., Lin, A. K., et al.: Phosphorus-31 nuclear magnetic resonance studies of human red blood cells, Blood Cells 8: 245–261, 1982.

    PubMed  CAS  Google Scholar 

  156. Zwerling, H. K., Diamond, J. N., Levy, G. C., et al.: Phosphorus-31 nuclear magnetic resonance measurements of 2,3-DPG degradation in human adult and cord blood erythrocytes, Magn. Reson. Med. 3: 10–14, 1986.

    PubMed  CAS  Google Scholar 

  157. Brown, F. F., Campbell, I. D., Kuchel, P. W., etal.: Human erythrocyte metabolism studies by 1H spin echo NMR, FEBS Lett. 82: 12–16, 1977.

    PubMed  CAS  Google Scholar 

  158. Yeh, J. C., Brindley, F. J., and Becker, E. D.: Nuclear magnetic resonance studies on intra-cellular sodium in human erythrocytes and frog muscle, Biophys. J. 13: 56–71, 1973.

    PubMed  CAS  Google Scholar 

  159. Gupta, R. K. and Gupta, P.: Direct observation of resolved resonances from intra- and extracellular sodium-23 ions in NMR studies of intact cells and tissues using dysprosium(III)tripolyphosphate as paramagnetic shift reagent, J. Mag. Res. 47: 344–350, 1982.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Cady, E.B. (1990). Clinical Studies. In: Clinical Magnetic Resonance Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1333-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1333-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1335-9

  • Online ISBN: 978-1-4684-1333-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics