Skip to main content

Measuring the Running Coupling Constant of the Strong, the Electromagnetic and Weak Forces

  • Chapter
Old and New Forces of Nature

Part of the book series: The Subnuclear Series ((SUS,volume 23))

  • 65 Accesses

Abstract

Lord Kelvin once wrote that every basic principle worth mentioning had already been discovered and that all that was needed were more precise measurements. Shortly after that, in 1897, J.J. Thomason discovered the first lepton (the electron) and opened the first chapter of elementary particle physics. The discovery of the J particle in 1974, interpreted as the bound state of a quark-antiquark pair with a new flavor, charm (much in the same fashion as the hydrogen atom is the bound state of the proton and electron), put the finishing touch to the hypothesis that quarks are the fundamental building blocks of all hadrons. Now we know our universe is likely to be made of 6 leptons and 6 quarks. They interact with each other by means of 4 interactions: nuclear (or strong), electro-magnetic, weak forces and gravity; each is distinctively different in nature and in magnitude at the energy scale commonly available in nature. Each of these forces is characterized by a coupling constant which roughly determines the size of the interaction. Most of our daily phenomena, from the maximum height of a mountain and living beings to temperatures of the sun and the earth can be explained in terms of these constants. Since Einstein’s unsuccessful efforts to unify gravity with electromagnetic forces at low energies, physicists have attempted, over many years, to unify these interactions at much higher energies than presently available in the laboratories. According to these speculations, the coupling constants of all forces will change with energy and at sufficiently high energy they will become comparable in size (Fig. 1). This property of changing with energy resulted in the name of “running coupling constants”. In these lectures we will take a few examples, primary from e+e annihilation to illustrate the effort in measuring these constants at different energies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For example, see A. Zichichi et al., Phys. Rev. Lett.6, 128, (1961) and the reference there

    Article  Google Scholar 

  2. K. V. Klitzing et al., Phys. Rev. Lett. 45, 494, (1980);

    Article  Google Scholar 

  3. B. Aedva et al., Phys. Rep. 109, # 3 and 4, 133, (1984);

    Google Scholar 

  4. C.C. Zhang, DESY 85–073, (1985);

    Google Scholar 

  5. S.L. Glashow, Nucl. Phys. 22, 579, (1961);

    Article  Google Scholar 

  6. S. Weinberg, Phys. Rev. Lett. 19, 1264, (1967)

    Article  Google Scholar 

  7. S. Weinberg, Phys. Rev. D5, 1412, (1972);

    Google Scholar 

  8. A. Salam in: Elementary Particle Theory, ed. N. Svartholm, Stockholm, (1968) p. 361;

    Google Scholar 

  9. S.L. Glashow et al., Phys. Rev. D2, 1285, (1970);

    Google Scholar 

  10. R. Budny, Phys. Lett. 55B, 227, (1975);

    Article  Google Scholar 

  11. B. Adeva et al., Phys. Rev. Lett. 48, 1701, (1982,)

    Article  Google Scholar 

  12. B. Adeva et al., Phys. Rep. 109, # 3 and 4, 133, (1984,)

    Article  Google Scholar 

  13. B. Adeva et al., Phys. Rev. Lett. 55, 665, (1985,)

    Article  Google Scholar 

  14. CELLO: H.J. Behrend et al., Zeit.f.Phys.C14,283, (1982,)

    Google Scholar 

  15. JADE: W. Bartel et al., Phys. Lett. 108B, 140, (1982,)

    Google Scholar 

  16. JADE: Zeit. f. Phys. C26, 507, (1985,)

    Google Scholar 

  17. PLUTO: Ch. Berger et al., Zeit. f. Phys. C7, 289, (1981)

    Google Scholar 

  18. PLUTO: Zeit. f. Phys. C21, 53, (1983,)

    Google Scholar 

  19. TASSO: M. Althoff et al., Zeit. f. Phys. C22, 13, (1984)

    Google Scholar 

  20. R. Brandelik et al., Phys. Lett. 1108, 173, (1982)

    Google Scholar 

  21. E. Fernandez et al., Phys. Rev. Lett. 50, 1238, (1983);

    Article  Google Scholar 

  22. T. Himel et al., Phys. Rev. Lett. 41, 449, (1978);

    Article  Google Scholar 

  23. M. E. Levi et al., Phys. Rev. Lett. 51, (1941, (1984);

    Article  Google Scholar 

  24. M. Derrick et al., Argonne National Laboratory Report, -HEP-PR-84–71 and D. Bender et al., Phys. Rev. D30 515, (1984);

    Google Scholar 

  25. F.A. Behrends and R. Kleiss, Nucl. Phys.B177,237, (1981,)

    Google Scholar 

  26. Nucl. Phy-s. B186, 22, (1981, and programs which they have supplied);

    Google Scholar 

  27. G. Passarino and M. Veltman, Nucl. Phys. B160, 151, (1979);

    Article  Google Scholar 

  28. G. Passarino, Nucl. Phys. B204, 237, (1982,)

    Article  Google Scholar 

  29. W. Wetzel, Nucl. Phys. 8227, 1, (1983);

    Article  Google Scholar 

  30. B. W. Lynn and R.G. Stuart, Nucl. Phys. B253, 216, (1985);

    Article  Google Scholar 

  31. F.A. Berends, R. Kleiss, S. Jadach, Nucl. Phys. B202, 63, (1983);

    Article  Google Scholar 

  32. R. Decker, E.A. Paschos and R.W. Brown, Phys. Rev. Lett. 52 1192, (1984);

    Article  Google Scholar 

  33. M. Böhm and W. Hollik, Nucl. Phys. B204, 45, (1982)

    Article  Google Scholar 

  34. M. Böhm and W. Hollik, Phys. Lett. 139B 213, (1984);

    Google Scholar 

  35. G. Arnison et -NT., Phys. Lett. 129B, 273, (1983);

    Google Scholar 

  36. P. Bagnaia et al., Zeit. f. Phys. C24, 1, (1984.)

    Google Scholar 

  37. D.P. Barber et al., Phys. Rev. Lett. 43, 830 , (1979. It was established here that the angular width of each jet is much smaller than the separation between the jets.)

    Google Scholar 

  38. R. Brandelik et al., Phys. Rev. Lett. 86B, 243, (1979).

    Google Scholar 

  39. G. Wolf, DESY Report 83–96, (1983)

    Google Scholar 

  40. T.F. Walsh, Proceedings of the International Europhysics Conference on High Energy Physics, Brighton , U.K., 20–27 July 83, p. 545 and P. Soeding, p. 567.)

    Google Scholar 

  41. M. Chen, MIT-LNS report #137 and Proceeding of the International School of Subnuclear Physics at Erice, Aug. (1983)

    Google Scholar 

  42. In this paper we use the MS scheme for the definition of. W.J. Marciano, Phys. Rev. D29, 580 , (1984.)

    Google Scholar 

  43. R.K. Ellis et al., Nucl. Phys. B168, 409, (1981.)

    Google Scholar 

  44. Z. Kunszt, Phys. Lett. 99B, 429, (1981)

    Google Scholar 

  45. Z. Kunszt, Phys. Lett. 107B, 123, (1981);

    Google Scholar 

  46. A. Ali, Phys. Lett. 110B, 67, (1982)

    Google Scholar 

  47. F.A. Berends and R. Kleiss, Nucl. Phys. B178, 141, (1981.)

    Google Scholar 

  48. F. Fabricus et al., Phys. Lett. 97B, 431, (1981);

    Google Scholar 

  49. F. Gutbrod et al., Zeit. f. Phys. C21, 235, (1984.)

    Google Scholar 

  50. R.Y. Zhu, Ph.D.Thesis, Massachusetts Institute of Technology, (1983, unpublished.)

    Google Scholar 

  51. B. Adeva et al., Phys. Rep. 109, Nos. 3 and 4, 133, (1984.)

    Article  Google Scholar 

  52. C.L. Basham, L. Brown, S. Ellis, and S. Love, Phys. Rev. D19, 2018, (1979.)

    Article  Google Scholar 

  53. F. Csikor et al., Phys. Rev. D31, 1025, (1985.)

    Google Scholar 

  54. A Ali, F. Barreiro, Nucl. Phys. B236, 269, (1984.)

    Article  Google Scholar 

  55. A. Ali et al., Phys. Lett. 93B, 155, (1980)

    Google Scholar 

  56. A. Ali et al., Nucl. Phys. Lett. 78B, 12, (1978);

    Google Scholar 

  57. see also: R.D. Field and R.P. Feynman, Nucl. Phys. B136, 1, (1978.)

    Article  Google Scholar 

  58. Our data is best described by this model with the fragmentation parameter oq=300MeV.)

    Google Scholar 

  59. B. Andersson, G. Gustafson, and T.Sjôstrand, Zeit. f. Phys. C6, 235, (1980);

    Google Scholar 

  60. Nucl. Phys. B197, 45, (1982.)

    Google Scholar 

  61. Likewise, in this model we find oq=420MeV.

    Google Scholar 

  62. Our results are insensitive to the exact values of oq used in either model.

    Google Scholar 

  63. B. Adeva et al., Phys. Rev. Lett. 50, 2051, (1983)

    Article  Google Scholar 

  64. W. Bartel et al., Phys. Lett. 119B, 239, (1982)

    Google Scholar 

  65. W. Bartel et al., Zeit. f. Phys. C25, 231, (1984);

    Google Scholar 

  66. H.J. Behrend et al., Phys. Lett. 138B, 311, (1984);

    Google Scholar 

  67. G. Wolf, DESY 83–96, (1983);

    Google Scholar 

  68. P. Soeding, Proceedings of the International Europhysics Conference on High Energy Physics, Brighton, 83, p. 567;

    Google Scholar 

  69. M. Althoff et al., DESY 84–057, (1984);

    Google Scholar 

  70. E. Fernandez et al., SLAC-PUB-3385, (1984.)

    Google Scholar 

  71. M. Chen, MIT-LNS Report No. 137 and Proceedings of the International School of Subnuclear Physics at Erice Summer School, Aug. (1983);

    Google Scholar 

  72. T.D. Gottschalk and M.P. Schatz, California Institute of Technology Reports: CALT-68–1173 and CALT-68–1199, Phys. Lett. 150B,451, (1985)

    Google Scholar 

  73. B. Adeva et al, Phys. Rev. Lett. 54, 1750, 85.)

    Google Scholar 

  74. These studies conclude that the approximate formulae commonly used , (22) will yield αs values ≈ 25% too high for the Є,δ cut when soft partons are discarded and 5 to 10% too high for M cut. We emphasize that the calculation used here and in the previous work, (23,28) of MARKJ do not involve the mentioned approximations.

    Google Scholar 

  75. Ch. Berger et al.,DESY Report 85–039, (1985.)

    Google Scholar 

  76. P.B. Mackenzie and G.P. Lepage, Phys.Rev.Lett. 47, 1244, (1981);

    Article  Google Scholar 

  77. S. J. Brodsky et al. Phys. Rev. D28,228, (1983);

    Google Scholar 

  78. P. Avery et al., Phys. Rev. Lett. 50, 807, (1983);

    Article  Google Scholar 

  79. C. Klopfenstein et al.,CUSB 83–07;

    Google Scholar 

  80. P. Franzini, private communication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Chen, M. (1988). Measuring the Running Coupling Constant of the Strong, the Electromagnetic and Weak Forces. In: Zichichi, A. (eds) Old and New Forces of Nature. The Subnuclear Series, vol 23. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1309-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1309-0_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1311-3

  • Online ISBN: 978-1-4684-1309-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics