Interactions Between Estrogen and EGF in Uterine Growth and Function

  • G. M. Stancel
  • R. M. Gardner
  • J. L. Kirkland
  • T. H. Lin
  • R. B. Lingham
  • D. S. Loose-Mitchell
  • V. R. Mukku
  • C. A. Orengo
  • G. Verner
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 230)


The rat uterus contains specific, high-affinity EGF receptors which possess a tyrosine kinase activity. As demonstrated autoradiographically, these receptors are present in the epithelial, stromal and myometrial cells of the uterus. Estrogen treatment in vivo produces a 2-3-fold increase in EGF receptor levels in the immature rat, the immature mouse and the ovariectomized adult rat; furthermore, EGF receptor levels vary throughout the estrus cycle in concert with levels of occupied nuclear estrogen receptor. This estrogen-induced increase in EGF receptor is preceded by an increase in the level of EGF receptor mRNA as judged by Northern blot analysis. In general, there is a good correlation between estrogen-induced DNA synthesis and EGF receptor levels in the uterus, although in certain situations EGF receptor levels are elevated without a subsequent increase in DNA synthesis. These observations suggest that an increase in tissue EGF receptor levels is important in estrogen-induced uterine growth, but that this increase in receptor levels alone is not sufficient to stimulate DNA synthesis. In addition to its possible role in tissue growth, we have shown very recently that EGF causes contraction of myometrial smooth muscle in a completely in vitro organ bath system. The qualitative nature of this contractile response is distinct from that produced by other classical uterotonic agents. The physiological significance of this uterine response to EGF remains to be elucidated.


Epidermal Growth Factor Receptor Epidermal Growth Factor Epidermal Growth Factor Receptor Kinase Epidermal Growth Factor Receptor mRNA Epidermal Growth Factor Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. M. Gardner, J. L. Kirkland, J. S. Ireland, and G. M. Stancel, Regulation of the uterine response to estrogen by thyroid hormone, Endocrinology103: 1164 (1978).PubMedCrossRefGoogle Scholar
  2. 2.
    J. L. Kirkland, R. M. Gardner, V. R. Mukku, M. Aktar, and G. M. Stancel, Hormonal control of uterine growth: the effect of hypothyroidism on estrogen stimulated Cell division, Endocrinology108: 2346 (1981).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Cohen, Isolation of a mouse submaxillary gland protein accelerating incision eruption and eyelid opening in the newborn animal, J. Biol. Chem. 237: 1562 (1962).Google Scholar
  4. 4.
    M. Hamburgh, C. A. Mendoza, J. F. Burkart, and F. Weil, Thyroid dependent processes in the developing nervous system, in: “Hormones and Development,” M. Hamburgh and E. J. W. Banning, eds., pp. 403–415, Meredith Corp., New York (1971).Google Scholar
  5. 5.
    V. R. Mukku and G. M. Stancel, Receptors for epidermal growth factor in the rat uterus, Endocrinology117: 149 (1985).PubMedCrossRefGoogle Scholar
  6. 6.
    G. E. Hoffman, C. H. V. Rao, G. H. Barrows, G. S. Schultz, and J. S. Sanfilippo, Binding sites for epidermal growth factor in human uterine tissues and leiomyomas, J. Clin. Endocrinol. Metab. 58: 880 (1984).CrossRefGoogle Scholar
  7. 7.
    V. R. Mukku and G. M. Stancel, Regulation of uterine epidermal growth factor receptors by estrogen, J. Biol. Chem. 260: 9820 (1985).PubMedGoogle Scholar
  8. 8.
    A. Ullrich, L. Coussens, J. S. Hayflick, T. J. Dull, A. Gray, A. W. Tam, J. Lee, Y. Yarden, T. A. Libermann, J. Schlessinger, T. Downward, E. L. V. Mayes, N. Whittle, M. D. Waterfield, and P. H. Seeburg, Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermal carcinoma Cells, Nature 309: 418 (1984).PubMedCrossRefGoogle Scholar
  9. 9.
    C. A. Lin, W. S. Chen, W. Kruiger, L. S. Stolarsky, W. Weber, R. M. Evans, I. M. Verma, G. N. Gill, and M. G. Rosenfeld, Expression cloning of human EGF receptor complimentary DNA: Gene amplification and three related messenger RNA products in A431 Cells, Science 224: 843 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    G. T. Merlino, Y. H. Xu, S. Ishii, A. J. L. Clark, K. Samba, T. Toyoshima, T. Yamamoto, and I. Pastan, Amplification and enhanced expression of the epidermal growth factor receptor gene in A431 human carcinoma Cells, Science 224: 417 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    J. L. Kirkland, L. B. LaPointe, E. Justin, and G. M. Stancel, The effect of estrogen treatment on mitosis of individual uterine Cell types, Biol. Reproduction21: 269 (1979).CrossRefGoogle Scholar
  12. 12.
    V. R. Mukku, J. L. Kirkland, M. Hardy, and G. M. Stancel, Hormonal control of uterine growth: temporal relationship between estrogen administration and DNA synthesis, Endocrinology111: 480 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    G. Carpenter and S. Cohen, Epidermal growth factor, Annu. Rev. Biochem. 48: 193 (1979).CrossRefGoogle Scholar
  14. 14.
    G. Carpenter, Properties of the receptor for epidermal growth factor, Cell 37: 357 (1984).PubMedCrossRefGoogle Scholar
  15. 15.
    J. V. Bruckner, S. Cohen, and M. W. Russo, Epidermal growth factor receptor: characterization of its protein kinase activity, in: “Molecular Mechanisms of Transmembrane Signalling,” S. Cohen and M. D. Housley, eds., pp. 253–277, Elsevier, Amsterdam (1985).Google Scholar
  16. 16.
    K. Yu and M. P. Czech, Type I insulin-like growth factor receptor mediates the rapid effects of multiplication stimulating activity on membrane transport system in rat soleus muscle, J. Biol. Chem. 259: 3090 (1984).PubMedGoogle Scholar
  17. 17.
    K. Yoshinaga, R. A. Hawkins, and J. F. Stocker, Estrogen secretion by the rat ovary in vivo during the estrous cycle and pregnancy, Endocrinology85: 103 (1969).PubMedCrossRefGoogle Scholar
  18. 18.
    J. H. Clark, J. N. Anderson, and E. J. Peck, Jr., Receptor estrogen complex in the nuclear fraction of the rat uterus during the estrous cycle, Science 176: 528 (1972).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Stack and J. Gorski, Estrogen stimulated DNA synthesis: a ratchet model for the prereplicative period, Endocrinology117: 2017 (1985).PubMedCrossRefGoogle Scholar
  20. 20.
    V. R. Mukku, Regulation of epidermal growth factor receptor levels by thyroid hormones, J. Biol. Chem. 259: 6543 (1984).PubMedGoogle Scholar
  21. 21.
    G. Bhargava, L. Rifas, and M. H. Makman, Presence of epidermal growth factor receptors and influence of epidermal growth factor on proliferation and aging in cultured smooth muscle Cells, J. Cell Physiol. 100: 365 (1979).PubMedCrossRefGoogle Scholar
  22. 22.
    D. A. Sirbasku, T. Ikeda, and D. Danielpour, Characterization of endocrine and autocrine mammary tumor Cell growth factors, in:. “Growth and Differentiation of Cells in a Defined Environment,” H. Murakami, I. Yamane, D. W. Barnes, J. P. Mather, I. Hayashi, and G. H. Sato, pp. 325–330, Springer-Verlag, New York (1985).Google Scholar
  23. 23.
    R. B. Dickson, M. E. McManaway, and M. E. Lippman, Estrogen-induced factors of breast cancer Cells partially replace estrogen to promote tumor growth, Science 232: 1540 (1984).CrossRefGoogle Scholar
  24. 24.
    Y. Taketami and T. Oka, Biological action of epidermal growth factor and its functional receptors in normal mammary epithelial Cells, Proc. Natl. Acad. Sci. USA 80: 2647 (1983).CrossRefGoogle Scholar
  25. 25.
    Y. Tomooka, R. P. DiAugustine, and J. A. McLachlan, Proliferation of mouse uterine epithelial Cells in Vitro, Endocrinology118: 1011 (1986).PubMedCrossRefGoogle Scholar
  26. 26.
    J. A. McLachlan, personal communication.Google Scholar
  27. 27.
    F. Gonzalez, J. Lakshmanan, S. Hoath, and D. A. Fisher, Effect of oestradiol-173 on uterine epidermal growth factor concentration in immature mice, Acta Endocrinol. 105: 425 (1984).PubMedGoogle Scholar
  28. 28.
    Y. Imai, Epidermal growth factor in rat uterine luminal fluid, Program of the 64th Ann. Mtg. of the Endocrine Soc., San Francisco, Abstr. No. 331, p. 162 (1982).Google Scholar
  29. 29.
    R. P. DiAugustine, D. E. Cannon, and J. A. McLachlan, Sex steroid hormones rapidly increase uterine epidermal growth factor (EGF), Program of the 67th Ann. Mtg. of the Endocrine Soc., Baltimore, Abstr. No. 1074 (1985).Google Scholar
  30. 30.
    H. Kurachi and T. Oka, Changes in epidermal growth factor concentrations of submandibular gland, plasma and urine of normal and sialoadenectomized female mice during various reproductive stages, J. Endocrinol. 106: 197 (1985).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Okamoto and T. Oka, Evidence for physiological function of epidermal growth factor: pregestational sialoadenectomy of mice decreases milk production and increases offspring mortality during lactation period, Proc. Natl. Acad. Sci. USA 81: 6059 (1984).PubMedCrossRefGoogle Scholar
  32. 32.
    S. C. Bade and R. M. Gardner, The effect of mepacrine on contractile responses of the isolated rat uterus, Biol. Reproduction32: 1031 (1985).CrossRefGoogle Scholar
  33. 33.
    E. M. McMurtrie, G. G. Ginsburg, G. T. Frederick, J. L. Kirkland, G. M. Stancel, and R. M. Gardner, Effect of a diabetic state on myometrial ultrastructure and isolated uterine contractions in the rat, Proc. Soc. Exp. Biol. Med. 180: 495 (1985).Google Scholar
  34. 34.
    B. C. Berk, T. A. Brock, R. C. Webb, M. B. Taubmann, W. J. Atkinson, M. A. Gimbrone, and R. W. Alexander, Epidermal growth factor, a vascular smooth muscle mitogen, induces rat aortic contraction, J. Clin. Invest. 75: 1083 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    I. Muramatsu, M. D. Hollenberg, and K. Cederis, Vascular actions of epidermal growth factor-urogastrone: possible relationship to prostaglandin production, Can. J. Physiol. Pharm. 63: 994 (1985).CrossRefGoogle Scholar
  36. 36.
    B. C. Berk, R. W. Alexander, T. A. Brock, M. A. Gimbrone, and R. C. Webb, Vasoconstriction: a new activity for platelet-derived growth factor, Science 232: 87 (1986).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • G. M. Stancel
    • 1
  • R. M. Gardner
    • 1
  • J. L. Kirkland
    • 2
  • T. H. Lin
    • 2
  • R. B. Lingham
    • 1
  • D. S. Loose-Mitchell
    • 1
  • V. R. Mukku
    • 1
  • C. A. Orengo
    • 1
  • G. Verner
    • 2
  1. 1.Dept. PharmacologyUniv. Texas Medical SchoolHoustonUSA
  2. 2.Div. Endocrinology/Dept. PediatricsBaylor College of MedicineHoustonUSA

Personalised recommendations