The Rabbit Progesterone Receptor and Uteroglobin Gene Expression

  • D. W. Bullock
  • D. J. Lamb
  • V. C. Rider
  • P. E. Kima
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 230)


Progesterone is essential for the maintenance of pregnancy in all mammalian species. Our studies have concentrated on the preimplaatation stages of pregnancy, as this period experiences the greatest embryonic mortality and is crucial for the establishment of pregnancy (1). Failure of implantation is an important cause of infertility and limits the success of treatments based on fertilization in vitro and embryo transfer. Knowledge of the mechanism of action of progesterone is thus necessary for advances in infertility therapy and in the design of new antiprogestins.


Progesterone Receptor Glucocorticoid Receptor Mouse Mammary Tumor Virus Molecular Weight Form Photoaffinity Labelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. B. Heap, A. P. F. Flint, and J. E. Gadsby, Embryonic signals and maternal recognition, in: “Biochem. Biophys. Res. Commular and Molecular Aspects of Implantation,” S. R. Glasser and D. W. Bullock, eds., Plenum Press, New York, p. 311 (1981).CrossRefGoogle Scholar
  2. 2.
    R. S. Krishnan and J. C. Daniel, Jr., “Blastokinin”: Inducer and regulator of blastocyst development in the rabbit uterus, Science 158: 490 (1967).PubMedCrossRefGoogle Scholar
  3. 3.
    H. M. Beier, Uteroglobin: a hormone-sensitive endometrial protein involved in blastocyst development, Biochim. Biophys. Acta160: 289 (1968).Google Scholar
  4. 4.
    H. Muller and M. Beato, RNA synthesis in rabbit endometrial nuclei. Hormonal regulation of transcription of the uteroglobin gene, Eur. J. Biochem. 112: 235 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    X.-Z. Shen, M.-J. Tsai, D. W. Bullock, and S. L. C. Woo, Hormonal regulation of rabbit uteroglobin gene transcription, Endocrinology 112: 871 (1983).PubMedCrossRefGoogle Scholar
  6. 6.
    J.-F. Savouret and E. Milgrom, Uteroglobin: a model for the study of progesterone action in mammals, DNA 2: 99 (1983).PubMedCrossRefGoogle Scholar
  7. 7.
    A. C. B. Cato and M. Beato, The hormonal regulation of uteroglobin gene expression, Anticancer Res. 5: 65 (1985).PubMedGoogle Scholar
  8. 8.
    P. Chambon, A. Dierich, M. P. Gaub, S. Jakowlev, J. Jongstra, A. Krust, J.-P. LePennec, P. Oudet, and T. Reudelhuber, Promoter elements of genes coding for proteins and modulation of transcription by estrogens and progesterone, Rec. Progr. Horm. Res. 40: 1 (1984).PubMedGoogle Scholar
  9. 9.
    K. R. Yamamoto, Steroid receptor regulated transcription of specific genes and gene networks, Ann. Rev. Genet. 19:209 (1985),Google Scholar
  10. 10.
    W. W. Grody, W. T. Schrader, and B. W. O’Malley, Activation, transformation, and subunit structure of steroid hormone receptors, Endocrinol. Rev. 3: 141 (1982).CrossRefGoogle Scholar
  11. 11.
    D. J. Lamb and D. W. Bullock, Heterogenous deoxyribonucleic acid-binding forms of rabbit uterine progesterone receptor, Endocrinology 114: 1833 (1984).PubMedCrossRefGoogle Scholar
  12. 12.
    L. S. Dure, W. T. Schrader, and B. W. O’Malley, Covalent attachment of a progestational steroid to chick oviduct progesterone receptor by photoaffinity labelling, Nature (London) 283: 784 (1980).CrossRefGoogle Scholar
  13. 13.
    D. J. Lamb, S. D. Holmes, R. G. Smith, and D. W. Bullock, Purification of a progesterone receptor from rabbit uterus, Biochem. Biophys. Res. Commun. 108: 1131 (1982).CrossRefGoogle Scholar
  14. 14.
    D. W. Cleveland, S. G. Fischer, M. W. Kirschner, and U. K. Laemmli, Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis, J. Biol. Chem. 252: 1102 (1977).PubMedGoogle Scholar
  15. 15.
    M. Birnbaumer, W. T. Schrader, and B. W, O’Malley, Photoaffinity labelling of the chick progesterone receptor proteins, J. Biol. Chem. 255: 1637 (1983).Google Scholar
  16. 16.
    D. J. Lamb, P. E. Kima, and D. W. Bullock, Evidence for a single steroid-binding protein in the rabbit progesterone receptor, Biochemistry 25: 6319 (1986a).PubMedCrossRefGoogle Scholar
  17. 17.
    J. M. Westphal, G. Fleischmann, and M. Beato, Photoaffinity labeling of steroid binding proteins with unmodified ligands, Eur. J. Biochem. 119: 101 (1981).PubMedCrossRefGoogle Scholar
  18. 18.
    O. A. Janne, Purification and photoaffinity labelling of rabbit uterine progesterone receptors, Endocrinology 110: A141 (1982).Google Scholar
  19. 19.
    H. Loosfelt, F. Logeat, M. T. VuHai, and E. Milgrom, The rabbit progesterone receptor. Evidence for a single steroid-binding subunit and characterization of receptor mRNA, J. Biol. Chem. 259: 14196 (1984).PubMedGoogle Scholar
  20. 20.
    R. G. Smith, C. A. Iramain, V. C. Buttram, Jr., and B. W. O’Malley, Purification of human uterine progesterone receptor, Nature (London) 253: 271 (1975).CrossRefGoogle Scholar
  21. 21.
    R. G. Smith, M. D’lstria, and N. T. Van, Purification of a human progesterone receptor, Biochemistry 20: 5557 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    B. Manz, H.-J. Griull, I. Kohler, A. Heubner, and K. Pollow, Synthesis of a new disulfide affinity adsorbent for purification of human uterine progesterone receptor, Eur. J. Biochem. 128:249 (1982),Google Scholar
  23. 23.
    B. A. Lessey, P. S. Alexander, and K. B. Horwitz, The subunit structure of human breast cancer progesterone receptors: characterization by chromatography and photoaffinity labelling, Endocrinology 112: 1267 (1983).PubMedCrossRefGoogle Scholar
  24. 24.
    S. D. Holmes and R. C. Smith, Ion exchange, chromatofocusing and size exclusion high-performance liquid chromatography of the human uterine progesterone receptor, J. Steroid Biochem. 23: 939 (1985).PubMedCrossRefGoogle Scholar
  25. 25.
    W. T. Schrader and B. W. O’Malley, Progesterone binding components of chick oviduct: IV. Characterization of purified subunits, J. Biol. Chem. 247: 61 (1972).Google Scholar
  26. 26.
    R. W. Kuhn, W. T. Schrader, R. G. Smith, and B. W. O’Malley, Progesterone binding components of chick oviduct: X. Purification by affinity chromatography, J. Biol. Chem. 250: 4220 (1975).PubMedGoogle Scholar
  27. 27.
    J.-M. Renoir, C.-R. Yang, P. Formstecher, P. Lustenberger, A. Wolfson, G. Redeuilh, J. Mester, H. Richard-Foy, and E.-E. Baulieu, Progesterone receptor from chick oviduct: Purification of molybdate-stabilized form and preliminary characterisation, Eur. J. Biochem. 127: 71 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    R. K. Puri, P. Grandics, J. J. Dougherty, and D, 0, Toft, purification of “nontransformed” avian progesterone receptor and preliminary characterization, J. Biol. Chem. 257:10831 (1982),Google Scholar
  29. 29.
    D. Sakai and J. Gorski, Reversible denaturation of the estrogen receptor and estimation of polypeptide chain molecular weight, Endocrinology 115: 2379 (1984).PubMedCrossRefGoogle Scholar
  30. 30.
    U. K. Laemmli, Cleavage of structural proteins during assembly of the head of bacteriophase T., Nature (London) 227:680 (1970),Google Scholar
  31. 31.
    F. Logeat, M. T. VuHai, and E. Milgrom, Antibodies to rabbit progesterone receptor: crossreaction with human receptor, Proc. Natl. Acad. Sci. USA 78: 1426 (1981).PubMedCrossRefGoogle Scholar
  32. 32.
    F. Logeat, M. T. VuHai, A. Fournier, P. Legrain, G. Buttin, and. E, Milgrom, Monoclonal antibodies to rabbit progesterone receptor: crossreaction with other mammalian progesterone receptors, Proc, Natl. Acad. Sci. USA 80: 6456 (1983).CrossRefGoogle Scholar
  33. 33.
    F. Logeat, R. Pamphile, H. Loosfelt, A. Jolivet, A. Fournier, and E. Milgrom, One-step immunoaffinity purification of active progesterone receptor. Further evidence in favor of the existence of a single steroid-binding subunit, Biochemistry 24: 1029 (1985b).PubMedCrossRefGoogle Scholar
  34. 34.
    K. B. Horwitz, M. B. Mockus, and B. A. Lessey, Variant T47D human breast cancer Biochem. Biophys. Res. Comms with high progesterone-receptor levels despite estrogen and antiestrogen resistance, Biochem. Biophys. Res. Comm 28:633 (1982),Google Scholar
  35. 35.
    K. B. Horwitz and P. S. Alexander, In situ photolinked nuclear progesterone receptors of human breast cancer Biochem. Biophys. Res. Comms: subunit molecular weights after transformation and translocation, Endocrinology 113:2195 (1983).Google Scholar
  36. 36.
    K. B. Horwitz, M. D. Francis, and L. L. Wei, Hormone-dependent covalent modification and processing of human progesterone receptors in the nucleus, DNA 4: 451 (1985).PubMedCrossRefGoogle Scholar
  37. 37.
    O. M. Conneely, W. P. Sullivan, D. O. Toft, W. Birnbaumer, R, G, Cook, B. L. Maxwell, T. Zarucki-Schulz, G. L. Greene, W, T. Schrader, and B. W. O’Malley, Molecular cloning of the chicken progesterone receptor, Science 233: 767 (1986).PubMedCrossRefGoogle Scholar
  38. 38.
    J. M. Jeltsch, Z. Krozowski, C. Quirin-Stricker, H, Gronemeyer, R. J. Simpson, J. M. Garnier, A. Krust, F, Jacob, and P. Chambon, Cloning of the chicken progesterone receptor, Proc. Natl., Acad, Sci. USA 83: 5424 (1986).CrossRefGoogle Scholar
  39. 39.
    H. Loosfelt, M. Atger, M. Misrahi, A. Guischon-Mantel, C, Meriel, F. Logeat, R. Benarous, and E. Milgrom, Cloning and sequence analysis of rabbit progesterone-receptor complementary DNA, Proc. Natl. Acad. Sci. USA 83: 9045 (1986).PubMedCrossRefGoogle Scholar
  40. 40.
    F. Logeat, M. LeCunff, P. Pamphile, and E. Milgrom, The nuclear-bound form of the progesterone receptor is generated through a hormone- dependent phosphorylation, Biochem. Biophys. Res. Commun, 131: 421 (1985a).CrossRefGoogle Scholar
  41. 41.
    W. V. Welshons, M. E. Lieberman, and J. Gorski, Nuclear localization of unoccupied oestrogen receptors, Nature (London) 207: 747 (1984).CrossRefGoogle Scholar
  42. 42.
    W. J. King and G. L. Greene, Monoclonal antibodies localize oestrogen receptor in the nuclei of target Biochem. Biophys. Res. Comms, Nature (London) 307: 745 (1984).CrossRefGoogle Scholar
  43. 43.
    B. W. Ennis, W. E. Stumpf, J.-M. Gasc, and E.-E. Baulieu, Nuclear localization of progesterone receptor before and after exposure to progestin at low and high temperatures: autoradiographic and immunohistochemical studies of chick oviduct, Endocrinology 119: 2066 (1986).PubMedCrossRefGoogle Scholar
  44. 44.
    M. Perrot-Applanat, F. Logeat, M. T. Groyer-Picard, and E. Milgrom, Immunocytochemical study of mammalian progesterone receptor using monoclonal antibodies, Endocrinology 116: 1473 (1985).PubMedCrossRefGoogle Scholar
  45. 45.
    D. J. Lamb, P. E. Kima, and D. W. Bullock, Occurrence of a 6S intermediate form of the progesterone receptor that is sensitive to ribonuclease, Mol. Biochem. Biophys. Res. Comm. Biochem. 73: (in press) (1986b).Google Scholar
  46. 46.
    M. R. Sherman and J. Stevens, Structure of mammalian steroid receptors: evolving concepts and methodological developments, Ann. Rev. Physiol. 46: 83 (1984).CrossRefGoogle Scholar
  47. 47.
    J. C. Tymoczko, M. M. Phillips, and S. M. Vernon, The effects of ribonuclease on rat liver dexamethasone receptor: increased affinity for deoxyribonucleic acid and altered sedimentation profile, Biochem. Biophys. Res. Commun. 230: 345 (1984).Google Scholar
  48. 48.
    T. W. Hutchens, F. C. Markland, and E. F. Hawkins, RNA-induced reversal of glucocorticoid receptor activation, Biochem. Biophys. Res. Comm. 105: 20 (1982).CrossRefGoogle Scholar
  49. 49.
    M. T. Chong and M. E. Lippman, Effects of temperature, nucleotides and sodium molybdate on activation and DNA binding of estrogen, glucocorticoid, progesterone and androgen receptors in MCF-7 human cancer Biochem. Biophys. Res. Comms, J. Biol. Chem. 257: 296 (1982).Google Scholar
  50. 50.
    B. Kovacic-Milivojevic, M. C. LaPointe, C. E. Reker, and W. V. Vedeckis, Ribonucleic acid is a component of the oligomeric transformed mouse AtT-20 Biochem. Biophys. Res. Comm glucocorticoid receptor, Biochemistry 24: 7357 (1985).PubMedCrossRefGoogle Scholar
  51. 51.
    A. Bailly, C. LePage, M. Rauch, and E. Milgrom, Sequence-specific DNA binding of the progesterone receptor to the uteroglobin gene: effects of hormone, antihormone and receptor phosphorylation, EMBO J. 5: 3235 (1986).PubMedGoogle Scholar
  52. 52.
    T. Willman and M. Beato, Steroid-free glucocorticoid receptor binds specifically to mouse mammary tumor virus DNA, Nature (London) 324: 688 (1986).CrossRefGoogle Scholar
  53. 53.
    P. B. Becker, B. Gloss, W. Schmid, U. Strahle, and G. Schutz, In vivo protein DNA interactions in a glucocorticoid response element require the presence of the hormone, Nature (London) 324:686 (1986),Google Scholar
  54. 54.
    D. B. Mendel, J. E. Bodwell, and A. Munck, Glucocorticoid receptors lacking hormone-binding activity are bound in the nuclei of ATP-depleted Biochem. Biophys. Res. Comms, Nature (London) 324: 478 (1986).CrossRefGoogle Scholar
  55. 55.
    A. P. Ricketts, M. Hagensee, and D. W. Bullock, Characterization in primary monolayer culture of separated Biochem. Biophys. Res. Comm types from rabbit endometrium, J. Reprod. Fert. 67: 15i (1983).Google Scholar
  56. 56.
    M. Warembourg, O. Tranchant, M. Atger, and E. Milgrom, Uteroglobin messenger ribonucleic acid: localization in rabbit uterus and JLung by in situ hybridization, Endocrinology 119:1632 (1986),Google Scholar
  57. 57.
    D. W. Bullock, In vitro translation of messenger RNA for a uteroglobin-like protein from rabbit lung, Biol. Reprod. 17:104 (1977).Google Scholar
  58. 58.
    M. Lombardero and A. Nieto, Glucocorticoid and developmental regulation of uteroglobin synthesis in rabbit lung, Biochem. J. 200: 487 (1981).PubMedGoogle Scholar
  59. 59.
    J.-F. Savouret, H. Loosfelt, M. Atger, and E. Milgrom, Differential hormonal control of a messenger RNA in two tissues: uteroglobin mRNA in the lung and the endometrium, J. Biol. Chem. 255: 4131 (1980).PubMedGoogle Scholar
  60. 60.
    E. Kay and M. Feigelson, An estrogen modulated protein in rabbit oviductal fluid, Biochim. Biophys. Acta271: 436 (1972).Google Scholar
  61. 61.
    A. Goswami and M. Feigelson, Differential regulation of a low-molecular weight protein in oviductal and uterine fluids by ovarian hormones, Endocrinology 95: 669 ( 1974.PubMedCrossRefGoogle Scholar
  62. 62.
    H. Loosfelt, F. Fridlansky, M. Atger, and E. Milgrom, A possible non-transcriptional effect of progesterone, J. Steroid Biochem. 15: 107 (1981a).PubMedCrossRefGoogle Scholar
  63. 63.
    H. Loosfelt, F. Fridlansky, J.-F. Savouret, M. Atger, and E. Milgrom, Mechanism of action of progesterone in the rabbit endometrium: induction of uteroglobin and its messenger RNA, J. Biol. Chem. 256: 3465 (1981b).PubMedGoogle Scholar
  64. 64.
    B. Heins and M. Beato, Hormonal control of uteroglobin secretion and preuteroglobin mRNA content in rabbit endometrium, Mol. Biochem. Biophys. Res. Comm. Endocrinol. 21: 139 (1981).Google Scholar
  65. 65.
    D. W. Bullock and G. F. Willen, Regulation of a specific uterine protein by estrogen and progesterone, Proc. Soc. Exp. Biol. Med. 146: 294 (1974).PubMedGoogle Scholar
  66. 66.
    H. T. Kopu, S. M. Hemminki, T. K. Torkkeli, and O. A. Janne, Hormonal control of rabbit uteroglobin secretion in rabbit uterus, Biochem. J. 180: 491 (1979).PubMedGoogle Scholar
  67. 67.
    H. T. Kopu, E. K. T. Kokkonen, and 0. A. Janne, Acute antiprogestational action of estradiol in the rabbit uterus, Endocrinology 109: 1479 (1781).CrossRefGoogle Scholar
  68. 68.
    E. R. Mulvihill and R. D. Palmiter, Relationship of nuclear progesterone receptors to induction of ovalbumin and conalbumin mRNA in chick oviduct, J. Biol. Chem. 255: 2085 (1980).PubMedGoogle Scholar
  69. 69.
    T. Torkkeli, Early changes in rabbit uterine progesterone receptor concentrations and uteroglobin synthesis after progesterone administration, Biochem. Biophys. Res. Commun. 97: 5598 (1980).CrossRefGoogle Scholar
  70. 70.
    C. E. Young, R. G. Smith, and D. W. Bullock, Uteroglobin mRNA and levels of nuclear progesterone receptor in endometrium, Mol. Biochem. Biophys. Res. Comm. Endocrinol. 22: 105 (1981).Google Scholar
  71. 71.
    V. Isomaa, H. Isotalo, M. Orava, T. Torkkeli, and O. Janne, Changes in cytosol and nuclear progesterone receptor concentrations in the rabbit uterus and their relation to induction of progesterone- regulated uteroglobin, Biochem. Biophys. Res. Commun. 88: 1237 (1979).CrossRefGoogle Scholar
  72. 72.
    J. Neulen, M. Beato, and H. M. Beier, Cytosol and nuclear progesterone-receptor concentrations in the rabbit endometrium during early pseudopregnancy under different treatments with estradiol and progesterone, Mol. Biochem. Biophys. Res. Comm. Endocrinol. 25: 183 (1982).Google Scholar
  73. 73.
    S. S. Rahman, R. B. Billiar, and B. Little, Studies on the decline of uteroglobin synthesis and secretion in the rabbit uterus during the continued presence of circulating progesterone, Endocrinology 108: 2222 (1981).PubMedCrossRefGoogle Scholar
  74. 74.
    H. Isotalo, Regulation of uteroglobin synthesis and conservation of progesterone and estrogen receptors in immature rabbit uterus during prolonged progesterone treatment, Biochem. Biophys. Res. Commun. 115: 1015 (1983).CrossRefGoogle Scholar
  75. 75.
    A. Bailly, M. Atger, P. Atger, M.-A. Cerbon, M. Alizon, M. T. VuHai, F. Logeat, and E. Milgrom, The rabbit uteroglobin gene: structure and interaction with the progesterone receptor, J. Biol. Chem. 258: 10384 (1983).PubMedGoogle Scholar
  76. 76.
    D. von der Ahe, S. Janich, C. Scheidereit, R. Renkawitz, G. Schutz, and M. Beato, Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters, Nature (London) 313: 706 (1985).CrossRefGoogle Scholar
  77. 77.
    A. C. B. Cato, S. Geisse, M. Wentz, H. M. Westphal, and M. Beato, The nucleotide sequences recognized by the glucocorticoid receptor in the rabbit uteroglobin gene region are located far upstream from the initiation of transcription, EMBO J. 3: 2771 (1984).PubMedGoogle Scholar
  78. 78.
    D.,von der Ahe, J.-M. Renoir, T. Buchou, E.-E. Baulieu, and M. Beato, Receptors for glucocorticoid and progesterone recognize distinct features of a DNA regulatory element, Proc. Natl. Acad. Sci. USA 83: 2817 (1986).CrossRefGoogle Scholar
  79. 79.
    W. Hendrickson, Protein-DNA interactions studied by the gel electrophoresis-DNA binding assay, BióTechniques May/June, p. 198 (1985).Google Scholar
  80. 80.
    J. Weinberger, D. Baltimore, and P. A. Sharp, Distinct factors bind to apparently homologous sequences in the immunoglobulin heavy- chain enhancer, Nature (London) 322: 846 (1986).CrossRefGoogle Scholar
  81. 81.
    N. F. Landolfi, J. D. Capra, and P. W. Tucker, Interaction of Biochem. Biophys. Res. Comm-type-specific nuclear proteins with immunoglobulin VH promotor reion sequences, Nature (London) 323: 548 (1986).CrossRefGoogle Scholar
  82. 82.
    H. Singh, R. Sen, D. Baltimore, and P. A. Sharp, A nuclear factor that binds to a conserved sequence motif in transcriptional control elements of immunoglobulin genes, Nature (London) 319–154 (1986),Google Scholar
  83. 83.
    R. Snead, L. Day, T. Chandra, M. Mace, Jr., D. W. Bullock, and S.. L. C, Woo, Mosaic structure and mRNA precursors of uterogloin, a hormone- regulated mammalian gene, J. Biol. Chem. 256:11911 (1981),Google Scholar
  84. 84.
    G. Suske, M. Wenz, A. C. B. Cato, and M. Beato, The uteroglobin gene region: hormonal regulation, repetitive elements and complete nucleotide sequence, Nucl. Acids Res. 11: 2257 (1983).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1987

Authors and Affiliations

  • D. W. Bullock
    • 1
  • D. J. Lamb
    • 1
  • V. C. Rider
    • 1
  • P. E. Kima
    • 1
  1. 1.Department of Cell BiologyBaylor College of MedicineHoustonUSA

Personalised recommendations