Skip to main content

Basic Compression Techniques

  • Chapter
Digital Pictures

Part of the book series: Applications of Communications Theory ((ACTH))

  • 75 Accesses

Abstract

We have so far described the nature and properties of picture signals such as the television signal and the facsimile signal. In particular, we considered statistical properties of pictures and the properties of the human viewer that are relevant to the coding problem. In this chapter we will describe many of the basic coding approaches that have been successfully used for digital picture communication. Emphasis will be on general principles, and how they are related or derived from the picture statistics and psychophysics of vision. We start with a classification of coding schemes and then describe them in some detail outlining procedures for optimizing their parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. M. Oliver, J.R. Pierce and C.E. Shannon, “The Philosophy of PCM”, Proceedings of IRE, Vol. 36, Oct. 1948, pp. 1324–1331.

    Article  Google Scholar 

  2. W. M. Goodall, “Television by Pulse Code Modulation”, Bell System Technical Journal, Vol. 30, Jan. 1951, pp. 33–49.

    Google Scholar 

  3. L. G. Roberts, “Picture Coding Using Pseudo-Random Noise”, IRE Trans, on Information Theory, Vol. IT-8, February 1962, pp. 145-–54.

    Google Scholar 

  4. A. K. Bhushan, “Efficient Transmission and Coding of Color Components”, M.S. Thesis, Massachusetts Institute of Technology, Cambridge, MA, June 1977.

    Google Scholar 

  5. W. Frei, P. A. Jaeger and P. A. Probst, “Quantization of Pictorial Color Information”, Nachrichtentech Z, Vol 61, 1972, pp. 401–404.

    Google Scholar 

  6. B. Marti, “Preliminary Processing of Color Images”, CCETT ATA/T/3/73, September 5, 1973.

    Google Scholar 

  7. L. Stenger, “Quantization of TV Chrominance Signals Considering the Visibility of Small Color Differences”, IEEE Trans, on Communications, Vol. COM-25, No. 11, November 1977.

    Google Scholar 

  8. C. C. Cutler, “Differential Quantization of Communication Signals”, U.S. Patent 2 605 361, July 1952.

    Google Scholar 

  9. F. deJager, “Delta Modulation, A Method of PCM Transmission using a 7-Unit Code”, Philips Research Reports, Dec. 1952, pp. 442–466.

    Google Scholar 

  10. C. W. Harrison, “Experiments with Linear Prediction in Television”, Bell System Technical Journal, Vol. 31, July 1952, pp. 764–783.

    Google Scholar 

  11. T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.

    MATH  Google Scholar 

  12. A. Habibi, “Comparison of Nth order DPCM encoder with Linear Transformations and Block Quantization Techniques”, IEEE Trans, on Communication Technology, Vol. COM-19, Dec. 1971, pp. 948–956.

    Google Scholar 

  13. H. G. Musmann, “Predictive Coding” Chapter in the book Image Transmission Techniques, edited by W. K. Pratt, Academic Press 1979.

    Google Scholar 

  14. R. E. Graham, “Predictive Quantizing of Television Signals”, IRE Wescon Convention Record, Vol. 2, pt 4, 1958, pp. 147–157.

    Google Scholar 

  15. B. G. Haskell, “Entropy Measurements for Nonadaptive and Adaptive, Frame-to-Frame, Linear Predictive Coding of Video Telephone Signals”, Bell System Technical Journal, Vol. 54, No. 6, August 1975, pp. 1155–1174.

    Google Scholar 

  16. H. G. Musmann, P. Pirsch, and H.-J. Grallert, “Advances in Picture Coding”, Proceedings of IEEE, April 1985.

    Google Scholar 

  17. J. O. Limb, and H. A. Murphy, “Measuring the Speed of Moving Objects from Television Signals”, IEEE Trans. on Comm., April 1975.

    Google Scholar 

  18. A. N. Netravali and J. D. Robbins, “Motion-Compensated Television Coding: Part I”, Bell System Technical Journal, Vol. 58, No. 33, March 1979, pp. 631–669.

    MATH  Google Scholar 

  19. A. N. Netravali and J. D. Robbins, “Motion Compensated Coding: Some New Results”, Bell System Technical Journal, Nov. 1980.

    Google Scholar 

  20. J. A. Stuller, A. N. Netravali and J. D. Robbins, “Interframe Television Coding Using Gain and Displacement Compensation”, Bell System Technical Journal, Sept. 1980.

    Google Scholar 

  21. K. A. Prabhu and A. N. Netravali, “Motion Compensated Components Color Coding,” IEEE Trans. Comm., Dec. 1982.

    Google Scholar 

  22. K. A. Prabhu and A. N. Netravali, “Motion Compensated Composite Color Coding”, IEEE Trans. Comm., Feb. 1983.

    Google Scholar 

  23. D. J. Connor, R. C. Brainard and J. O. Limb, “Intraframe Coding for Picture Transmission”, IEEE Proceedings, July 1972.

    Google Scholar 

  24. R. Jung and R. Lippman, “Error Response of DPCM Decoders”, Sonderdruck aus Nachrichtentechnische Zeitschrift, Bd. 28, 1974, pp. 431–436.

    Google Scholar 

  25. J. Max, “Quantizing for Minimum Distortion”, IEEE Trans, on Information Theory, Vol. IT-6, March 1960, pp. 7–12. Also, S. P. Lloyd, “Least Squares Quantization in PCM”, IEEE Trans on Information Theory, March 1982, pp. 129–136.

    Google Scholar 

  26. D. K. Sharma and A. N. Netravali, “Design of Quantizers for DPCM Coding of Picture Signals”, IEEE Trans. on Communication, Vol. COM-25, Nov. 1977, pp. 1267–1274.

    Google Scholar 

  27. A. N. Netravali, “On Quantizers for DPCM Coding of Picture Signals”, IEEE Trans. on Information Theory, Vol. IT-23, No. 3, May 1977, pp. 360–370.

    Article  Google Scholar 

  28. A. N. Netravali and C. B. Rubinstein, “Quantization of Color Signals”, Proceedings of IEEE, Vol. 65, No. 3, August 1977, pp. 1177–1187.

    Article  Google Scholar 

  29. A. N. Netravali and B. Prasada, “Adaptive Quantization of Picture Signals Using Spatial Masking”, Proceedings of IEEE, Vol. 65, April 1977, pp. 536–548.

    Article  Google Scholar 

  30. 2.23] P. Pirsch, “Block Coding of Color Video Signals”, in Proceedings of National Telecommunications Conference, 1977, pp. 10.5.1–10.5.5.

    Google Scholar 

  31. E. O. Brigham, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, N.J., 1984.

    Google Scholar 

  32. Programs for Digital Signal Processing, Edited by IEEE Acoustics, Speech and Signal Processing Society, IEEE Press, New York, 1979.

    Google Scholar 

  33. H. F. Silverman, “An Introduction to Programming the Winograd Fourier Transform Algorithm (WFTA),” IEEE Trans, on Acoustics, Speech and Signal Processing, v. ASSP-25, No. 2, April 1977, pp. 152–165.

    Article  Google Scholar 

  34. W. K. Pratt, J. Kane and H. C. Andrews, “Hadmard Transform Image Coding,” Proc. IEEE, v. 57, No. 1, Jan. 1969, pp. 58–68.

    Article  Google Scholar 

  35. R. D. Brown, “A Recursive Algorithm for Sequency Ordered Fast Walsh Transforms,” IEEE Trans. Computers, v. C-26, No. 8, Aug. 1977, pp. 819–822.

    Article  Google Scholar 

  36. N. Ahmed and K. R. Rao, Orthogonal Transform for Digital Signal Processing, Springer-Verlag, New York, 1975.

    Book  Google Scholar 

  37. J. Makhoul, “A Fast Cosine Transform in One and Two Dimensions,” IEEE Trans. Acoustics, Speech and Signal Processing, v. ASSP-28, No. 1, Feb. 1980, pp. 27–34.

    Article  Google Scholar 

  38. B. Fino, “An Experimental Study of Image Coding Utilizing the Haar Transform and the Hadamard Complex Transform,” Ann. Telecommunications, v. 27 (5-6) pp. 185–208, 1972 (in French).

    MATH  Google Scholar 

  39. W. K. Pratt, W. Chen and L. R. Welch, “Slant Transform Image Coding,” IEEE Trans. Communications, V. COM-22, pp. 1075–1093, Aug. 1974.

    Google Scholar 

  40. A. K. Jain, “Image Data Compression: A Review,” Proc. IEEE, v. 69, No. 3, pp. 349–389, March 1981.

    Article  Google Scholar 

  41. H. C. Andrews and C. L. Patterson, “Outer Product Expansions and Their Uses in Digital Image Processing,” IEEE Trans. Computers, v. C-25, No. 2 pp. 140–148, Feb. 1976.

    Article  Google Scholar 

  42. F. W. Mounts, A. N. Netravali and B. Prasada, “Design of Quantizers for Real-Time Hadamard Transform Coding of Pictures,” Bell Sys. Tech. J., v. 56, No. 1, January 1977, pp. 21–48.

    Google Scholar 

  43. A. K. Jain and S. H. Wang, “Stochastic Image Models and Hybrid Coding,” Final Report Contract No. N00953-77-C-003 MJE, Dept. of Elec. Engin, State U. of New York at Buffalo, October 1977.

    Google Scholar 

  44. J. Huang and P. Schultheiss, “Block Quantization of Correlated Gaussian Random Variables,” IEEE Trans. Communications, COM-11, 1963, pp. 286–296.

    Google Scholar 

  45. W. H. Chen and C. N. Smith, “Adaptive Coding of Monochrome and Color Images,” IEEE Trans. Communications, v. COM-25, No. 11, November 1977, pp. 1285–1292.

    Google Scholar 

  46. J. M. Wozencraft and I. M. Jacobs, Principles of Communication Engineering, John Wiley & Sons, Inc., New York, 1965.

    Google Scholar 

  47. J. O. Limb, C. B. Rubinstein and J. E. Thompson, “Digital Coding of Color Video Signals-A Review,” IEEE Trans. Communications, v COM-25, No. 11, November 1977, pp. 1349–1385.

    Google Scholar 

  48. T. R. Natarajan and N. Ahmed, “On Interframe Transform Coding,” IEEE Trans. Communications, v. COM-25, No. 11, November 1977, pp. 1323–1329.

    Google Scholar 

  49. J. R. Jain and A. K. Jain, “Interframe Adaptive Data Compression Techniques for Images,” Signal and Image Processing Laboratory—Dept. of Elec. and Computer Engin., University of Calif., Davis, CA., AD-A078841.

    Google Scholar 

  50. S. C. Knauer, “Real-Time Video Compression Algorithm for Hadamard Transform Processing,” IEEE Trans. Electromagnetic Compatibility, v. EMC-18, No. 1, February 1976, pp. 28–36.

    Article  Google Scholar 

  51. A. G. Tescher, “Transform Image Coding,” Chapter 4 of Image Transmission Techniques, W. K. Pratt ed., Academic Press, New York, 1979.

    Google Scholar 

  52. A. Habibi, “Hybrid Coding of Pictorial Data,” IEEE Trans. Communications, v. COM-22, No. 5, May 1974, pp. 614–624.

    Google Scholar 

  53. J. A. Roese, “Hybrid Transform/Predictive Image Coding,” Chapter 5 of Image Transmission Techniques, W. K. Pratt ed., Academic Press, New York, 1979.

    Google Scholar 

  54. R.J. Clarke, “Hybrid Intraframe Transform Coding of Image Data,” IEE Proc., v. 131 part F, No. 1, Feb. 1984, pp. 2–6.

    Google Scholar 

  55. R. M. Gray, “Vector Quantization” ASSP Magazine, November 1984.

    Google Scholar 

  56. Y. Linde, A. Buzo and R. Gray, “An Algorithm for Vector Quantizer Designs,” IEEE Trans Commun., COM-28, Jan. 1980, pp. 84–95.

    Google Scholar 

  57. W. H. Equitz, “Fast Algorithms for Vector Quantization Picture Coding,” M. S. Thesis, M.T, June 1984. Also see “Some Methods for Classification and Analysis of Multivariate Observations”, MacQueen, Proc. 5th Berkeley Symp. on Math, Statistics and Probability, v. 1, pp. 281–296, 1967.

    Google Scholar 

  58. A. Gersho and B. Ramamurthi, “Image Coding using Vector Quantization,” Proc. of Int. Conf. ASSP, Paris, 1982, pp. 428–431.

    Google Scholar 

  59. D. J. Healy and D. R. Mitchell, “Digital Video Bandwidth Compression Using Block Truncation Coding”, IEEE Trans. Commun., COM-29, Dec. 1981, pp. 1809–1823.

    Google Scholar 

  60. P. J. Burt and E. H. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Trans. on Communications, COM-31, April 1983, pp. 532–540.

    Google Scholar 

  61. J. W. Woods and Sean D. O’Neil, “Subband Coding of Images,” IEEE Trans, on Acoustics, Speech and Signal Proc., ASSP-34, Oct. 1986, pp. 1278–1288.

    Google Scholar 

  62. R. Hunter and A. H. Robinson, “International Digital Facsimile Coding Standards,” Proceedings of IEEE, July 1980.

    Google Scholar 

  63. O. Johnsen, J. Segen and G. L. Cash, “Coding of Two-Level Pictures of Pattern Matching and Substitution,” Bell System Technical J., Vol. 62, Oct. 1983, pp. 2513–2545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1988 AT&T Bell Laboratories

About this chapter

Cite this chapter

Netravali, A.N., Haskell, B.G. (1988). Basic Compression Techniques. In: Digital Pictures. Applications of Communications Theory. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1294-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1294-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1296-3

  • Online ISBN: 978-1-4684-1294-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics