Skip to main content

Structure of Thermitase, A Thermostable Serine Proteinase from Thermoactinomyces Vulgaris, and its Relationship with Subtilisin-Type Proteinases

  • Chapter
Extracellular Enzymes of Microorganisms

Abstract

Thermitase (EC 3.4.21.14) is an extracellular thermostable serine proteinase isolated from Thermoactinomyces vulgaris culture filtrate [1–3]. The enzyme resembles in its characteristics the subtilisins. This is strongly indicated especially by the structure of the active site peptide [4]. The enzyme contains one methionine and one cysteine residue; these two residues are apparently functionally important [4]. Closely related seem to be the alkaline proteinases of Bacillus cereus and Bacillus thuringiensis [5] and proteinase K from the mold Tritirachium album [6]. Our interest in structural investigation of thermitase was stimulated by the problem of its apparently essential cysteinyl residue, by the lack of information on evolutionary relations between thermitase and other subtilisin-type enzymes and on the structural basis of the increased thermostability of thermitase. Another factor not to be neglected was the practical importance of the enzyme. Since the localization of the methionine residue was known from one of the early studies we decided to start our sequence work with the cyanogen bromide digest of the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Frömmel, G. Hausdorf, W.E. Höhne, U. Behnke, and H. Ruttloff, Charakterisierung einer protease aus Thermoactinomyces vulgaris (Thermitase), Acta Biol. Med. Germ., 37: 1193 (1978).

    Google Scholar 

  2. R. Kleine, Properties of thermitase, a thermostable serine protease from Thermoactinomyces vulgaris, Acta Biol. Med. Germ., 41: 89 (1982).

    CAS  Google Scholar 

  3. C. Frömmel, and W.E. Höhne, Influence of calcium binding on the thermal stability of thermitase, a serine protease from Thermoactinomyces vulgaris, Biochim. Biophys. Acta, 670: 25 (1981).

    Google Scholar 

  4. G. Hausdorf, K. Krüger, and W.E. Höhne, Thermitase, a serine protease from Thermoactinomyces vulgaris, Int. J. Peptide Protein Res., 15: 420 (1980).

    Article  CAS  Google Scholar 

  5. P. Zagnitko, G.G. Chestukhina, L.P. Revina, and V.M. Stepanov, Thiol-dependent serine proteinases, Bioorgan. Khim., 10: 383 (1984).

    Google Scholar 

  6. K. -D. Jany, G. Lederer, and B. Mayer, Amino acid sequence of proteinase K from the mold Tritirachium album Limber, FEBS Lett., 199: 139 (1986).

    Article  CAS  Google Scholar 

  7. M. Baudys, V. Kostka, K. Grüner, G. Hausdorf, and W.E. Höhne, Amino acid sequence of the small cyanogen bromide peptide of thermitase, a thermostable serine proteinase from Thermoactinomyces vulgaris, Int. J. Peptide Protein Res., 19: 32 (1982).

    Article  CAS  Google Scholar 

  8. J. Kraut, Subtilisin: X-ray structure, in: “The Enzymes”, P.D. Boyer, ed., Acad. Press, New York and London (1971).

    Google Scholar 

  9. M. Baudys, V. Kostka, G. Hausdorf, S. Fittkau, and W.E. Höhne, Amino acid sequence of the tryptic SH-peptide of thermitase, Int. J. Peptide Protein Res., 22: 26 (1983).

    Google Scholar 

  10. F. S. Markland, and E.L. Smith, Subtilisins: Primary structure, chemical and physical properties, in: “The Enzymes”, P.D. Boyer, ed., Acad. Press, New York and London (1971).

    Google Scholar 

  11. J. D. Robertus, R.A. Alden, J.J. Birktoft, J. Kraut, J.C. Powers, and P.E. Wilcox, An X-ray crystallographic study of the binding of peptide chloromethyl ketone inhibitors to subtilisin BPN’, Biochemistry, 11: 2439 (1972).

    Article  PubMed  CAS  Google Scholar 

  12. C. Betzel, G.P. Pal, M. Struck, K.-D. Jany and W. Seanger, Active-site geometry of proteinase K, FEBS Lett., 197: 105 (1986).

    Article  PubMed  CAS  Google Scholar 

  13. W. M. Fitch and E. Margoliash, Construction of phylogenetic trees, Science, 155: 279 (1967).

    Article  PubMed  CAS  Google Scholar 

  14. K. Mizusawa and F. Yoshida, Thermophilic Streptomyces alkaline proteinase, J. Biol. Chem., 247: 6978 (1972).

    PubMed  CAS  Google Scholar 

  15. D. Brumme, K. Peters, S. Fink and S. Fittkau, Enzyme-substrate interactions in the hydrolysis of peptide substrates by thermitase, subtilisin BPN’ and proteinase K, Arch. Biochem. Biophys., 244: 439 (1986).

    Article  Google Scholar 

  16. B. Meloun, M. Baudys, V. Kostka, G. Hausdorf, C. Frammel, and W.E. Hahne, Complete primary structure of thermitase from Thermoactinomyces vulgaris and its structural features related to the subtilisin-type proteinases, FEBS Lett., 183: 195 (1985).

    Article  CAS  Google Scholar 

  17. M. Dzionara, S.M.L. Robinson and B. Wittman-Liebold, Secondary structure of proteins from the 30S subunit of the Escherichia coli ribosome, Hoppe-Seyler’s Z. Physiol. Chem., 358: 1003 (1977).

    Article  CAS  Google Scholar 

  18. W. Bode, E. Papamokos, D. Musil, U. Seemüller, and H. Fritz, Refined 1,2 A crystal structure of the complex formed between subtilisin Carlsberg and the inhibitor eglin C. Molecular structure of eglin and its interaction with subtilisin, EMBO J., 5: 813 (1986).

    PubMed  CAS  Google Scholar 

  19. R. C. Garratt, W.R. Taylor, and J.M. Thornton, The influence of tertiary structure on secondary structure prediction, FEBS Lett., 188: 59 (1985).

    Article  CAS  Google Scholar 

  20. E. Stellwagen, Strategies for increasing the stability of enzymes, Ann. N.Y. Acad. Sci., 434: 1 (1985).

    Article  Google Scholar 

  21. P. Argos, M.G. Rossmann, U.M. Grau, H. Zuber, G. Frankand, and J.D. Tratchin, Thermal stability and protein structure, Biochemistry, 18: 5698 (1979).

    Article  PubMed  CAS  Google Scholar 

  22. M. F. Perutz, and H. Raidi, Stereochemical basis of heat stability in bacterial ferredoxins and in hemoglobin A2, Nature, 255: 256 ( 1975.

    Article  PubMed  CAS  Google Scholar 

  23. S. K. Burley, and G.A. Petsko, Aromatic-aromatic interactions in proteins, Science, 229: 23 (1985).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Baudyš, M., Meloun, B., Kostka, V., Hausdorf, G., Frömmel, C., Höhne, W.E. (1987). Structure of Thermitase, A Thermostable Serine Proteinase from Thermoactinomyces Vulgaris, and its Relationship with Subtilisin-Type Proteinases. In: Chaloupka, J., Krumphanzl, V. (eds) Extracellular Enzymes of Microorganisms. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1274-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1274-1_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1276-5

  • Online ISBN: 978-1-4684-1274-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics