Advertisement

Effect of Diabetes Mellitus and End-Stage Renal Disease on HDL Metabolism

  • M. H. Tan
Part of the Advances in Experimetal Medicine and Biology book series (AEMB, volume 201)

Abstract

Different types of diabetes mellitus have different effects on high density lipoprotein (HDL) metabolism. Impaired glucose tolerance may be associated with no change or a slight decrease in HDL cholesterol. Type I diabetes may have normal or elevated HDL cholesterol levels. This HDL elevation may be due to an increase in HDL2 or HDL3. Apo A-I/Apo A-II ratio is also higher in these diabetics. Type II diabetics may have normal or low HDL cholesterol levels as well as normal or decreased Apo A-I levels. In gestational diabetics, the mean HDL cholesterol is lower than controls. Dietary therapy resulting in > 10% weight loss in obese diabetics leads to an increase in their HDL-cholesterol levels, although the effect on the latter is controversial. Intensive insulin therapy (for 2–3 weeks) increases serum apo A-I and HDL-cholesterol levels.

End-stage renal disease also affects HDL metabolism. In general, patients with this disorder have a decrease of cholesterol and an increase in triglyceride in their HDL. There is an increase in apo E and a decrease in apo CII in their HDL. Apo A-I levels are unaffected whereas apo A-II levels are decreased. Renal transplant patients may have low, normal or high HDL cholesterol and normal or high apo-I levels. In non-diabetic, normotriglyceridemic patients peritoneal dialysis increases their HDL-cholesterol. In non-diabetic hypertriglyceridemic and diabetic patients, peritoneal dialysis causes no change in their HDL-cholesterol. Hemodialysis can increase HDL-cholesterol levels in these patients.

In contrast to uremic humans, uremic rats have elevated HDL-cholesterol and this accounts for most of the increase in their serum cholesterol. The dialysed and undialysed plasma of these uremic rats have inhibitory action on hepatic lipase activity.

Diabetes mellitus and uremia due to end-stage renal disease are common metabolic disorders which can affect high density lipoprotein (HDL) metabolism. In this paper the many changes in HDL metabolism associated with these syndromes will be presented.

Keywords

Renal Transplant Patient Intensive Insulin Therapy High Density Lipoprotein Cholesterol Level Serum High Density Lipoprotein Cholesterol Hepatic Lipase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Diabetes Data Group: Classification and diagnosis of diabetes mellitus and other categories of glucose tolerance, Diabetes 28:1039–1057 (1979).Google Scholar
  2. 2.
    K. Asayama, S. Amemiya, K. Kato, Serum lipids and postheparin plasma lipase activity in Japanese children with ketosis-prone diabetes mellitus, Tohoku J. Exp. Med. 141 (Suppl):627–630, (1983).PubMedCrossRefGoogle Scholar
  3. 3.
    S.W. Weidman, J.B. Ragland et al, Effects of insulin on plasma lipoproteins in diabetic ketoacidosis: evidence for a change in high density lipoprotein composition during treatment, J. Lip. Res. 23:171–182 (1982).Google Scholar
  4. 4.
    G.D. Calvert, J.J. Graham, T. Mannik et al, Effects of therapy on plasma high density lipoprotein cholesterol concentration in diabetes mellitus, Lancet. 2:66–68 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    R.H. Eckel, J.J. Albers, M.C. Cheung et al, High density lipoprotein composition in insulin-dependent diabetes mellitus, Diabetes 30:132–138 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    U. Ewald, S. Gustafson, T. Tuvemo et al, Increased high density lipoproteins in diabetic children, Eur. J. Pediatr. 142:154–156 (1984).PubMedCrossRefGoogle Scholar
  7. 7.
    M.B. Mattock, A.M. Salter, J.H. Fuller et al, High density lipoprotein subfractions in insulin-dependent diabetic and normal subjects, Atherosclerosis 45:67–79 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    E.A. Nikkila, High density lipoproteins in diabetes, Diabetes 30(Suppl 2):82–87 (1981).Google Scholar
  9. 9.
    P.N. Durrington, Serum high density lipoprotein cholesterol subfractions in Type I (insulin dependent) diabetes mellitus, Clin. Chem. Acta. 120:21–28 (1982).CrossRefGoogle Scholar
  10. 10.
    E.R. Briones, S.J.T. Mao, P.J. Plumbo et al, Analysis of plasma lipids and apolipoproteins in insulin-dependent and non-insulin dependent diabetics, Metabolism 33:42–49 (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    G. Schernthaner, G.M. Kostner, H. Dieplinger et al, Apolipoproteins (A-I, A-II, B), Lp(a) Lipoprotein and Lecithin-cholesterol acyltransferase activity in diabetes mellitus, Atherosclerosis 49:277–293 (1983).PubMedCrossRefGoogle Scholar
  12. 12.
    P.N. Durrington, Serum high density lipoprotein cholesterol in diabetes mellitus: an analysis of factors which influence its concentration, Clin. Chem. Acta. 104:11–23 (1980).CrossRefGoogle Scholar
  13. 13.
    R.C. Biesbrock, J.J. Albers, P.W. Wahl et al, Abnormal composition of high density lipoproteins in non-insulin dependent diabetics, Diabetes 31:126–131 (1982).Google Scholar
  14. 14.
    K.G. Taylor, A.D. Wright, T.J.N. Carter et al, High density lipoprotein cholesterol and apolipoprotein A-I levels at diagnosis in patients with non-insulin dependent diabetes, Diabetologia 20:535–539 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    M.R. Taskinen, E.A. Nikkila, T. Kuusi et al, Lipoprotein lipase activity and serum lipoproteins in untreated Type II (insulin independent) diabetes associated with obesity, Diabetologia 22:46–50 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    B.V. Howard, W.C. Knowler, B. Vasquez et al, Plasma and lipoprotein cholesterol and triglyceride in the Pima Indian population. Comparison of diabetics and non-diabetics, Atherosclerosis 4:462–471 (1984).Google Scholar
  17. 17.
    B. Capaldo, L. Tutino, L. Patti et al, Lipoprotein composition in individuals with impaired glucose tolerance, Diabetes Care 6:575–578 (1983).PubMedCrossRefGoogle Scholar
  18. 18.
    D.R. Hollingsworth, S.M. Grundy, Pregnancy-associated hypertriglyceridemia in normal and diabetic women, Diabetes 31:1092–1097 (1982).PubMedGoogle Scholar
  19. 19.
    L. Kenney, K. Walshe, D.R. Hadden et al, The effect of intensive dietary therapy on serum high density lipoprotein cholesterol in patients with Type II (non-insulin-dependent) diabetes mellitus. A prospective study, Diabetologia 23:24–27 (1982).Google Scholar
  20. 20.
    G. Riccardi, A. Rivellese, D. Pacioni et al, Separate influence of dietary carbohydrate and fibre on the metabolic control in diabetes, Diabetologia. 26:116–121 (1984).PubMedCrossRefGoogle Scholar
  21. 21.
    M.S. Greenfield, L. Doberne, M. Rosenthal et al, Lipid metabolism in non-insulin-dependent diabetes mellitus, Arch. Int. Med. 142:1498–1500 (1982).CrossRefGoogle Scholar
  22. 22.
    K.G. Taylor, W.G. Joh, K.A. Matthews et al, A prospective study on the effect of 12 months treatment on serum lipids and apolipoproteins A-I and B in Type II (non-insulin-dependent) diabetes, Diabetologia 23:507–510 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    M.F. Lopes-virella, H.J. Wohltmann, R.K. Mayfield etal, Effect of metabolic control on lipid, lipoprotein, and apoprotein levels in 55 insulin-dependent diabetic patients. A longitudinal study, Diabetes 32:20–25 (1983).Google Scholar
  24. 24.
    J.M. Folks, T.M. O’Dorisio, S. Cataland, Improvement of high-density lipoprotein-cholesterol levels. Ambulatory Type I diabetics treated with the subcutaneous insulin pump, JAMA 247:37–39 (1982).CrossRefGoogle Scholar
  25. 25.
    E.A. Nikkila, M.R. Taskinen, M. Kekki, Relation of plasma high-density lipoprotein cholesterol to lipoprotein-lipase activity in adipose tissue and skeletal muscle of man, Atherosclerosis 29:497–501 (1978).PubMedCrossRefGoogle Scholar
  26. 26.
    T. Driieke, B. Lacour, J.B. Roullet et al, Recent advances in factors that alter lipid metabolism in chronic renal failure, Kid. Int. 24(Suppl 16):S134–S138 (1983).Google Scholar
  27. 27.
    M.H. Tan, Hyperlipidemia associated with end-stage renal disease, N. S.Med. Bull. 62:79–81 (1983).Google Scholar
  28. 28.
    J.D. Bagdade, J.J. Albers, Plasma high-density lipoprotein concentration in chronic hemodialysis and renal transplant patients, N.Engl. J. Med. 296:1436–1439 (1977).PubMedCrossRefGoogle Scholar
  29. 29.
    J.D. Brunzell, J.J. Albers, L.B. Haas et al, Prevalence of serum lipid abnormalities in chronic hemodialysis, Metabolism 26:903–910 (1977).PubMedCrossRefGoogle Scholar
  30. 30.
    H.E. Norbeck, Serum lipoprotein in chronic renal failure, Acta Med. Scand. 649:(Suppl):1–49 (1981).Google Scholar
  31. 31.
    A. Pasternack, T. Leino, T. Solakivi-Jaakkola et al, Effect of furosemide on the lipid abnormalities in chronic renal failure, Acta Med. Scand. 214:153–157 (1983).PubMedCrossRefGoogle Scholar
  32. 32.
    J. Rapoport, M. Aviram, C. Chaimovitz et al, Defective high-density lipoprotein composition in patients on chronic hemodialysis, N. Engl. J. Med. 299:1326–1329 (1978).PubMedCrossRefGoogle Scholar
  33. 33.
    P.J. Nestel, N.H. Fidge, M.H. Tan, Increased lipoproteion-remnant formation in chronic renal failure, N.Eng. J. Med. 307:329–333 (1982).CrossRefGoogle Scholar
  34. 34.
    I. Staprans, J.M. Felts, B. Zacherle, Apoprotein composition of plasma lipoproteins in uremic patients on hemodialysis, Clin. Chem. Acta 93:135–143 (1979).CrossRefGoogle Scholar
  35. 35.
    W.C. Breckenridge, D.A.K. Roncari, R. Khanna et al, The influence of continuous ambulatory peritoneal dialysis on plasma lipoproteins, Atherosclerosis 45:249–258 (1982).PubMedCrossRefGoogle Scholar
  36. 36.
    J.K. Huttunen, A. Pasternack, T. Vanttirien et al, Lipoprotein metabolism in patients with chronic uremia, Acta Med. Scand. 204:211–218 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    N. Kobayashi, M. Okubo, F. Marumo et al, De novo development of hypercholesterolemia and elevated high density lipoprotein cholesterol: apoprotein A-I ratio in patients with chronic renal failure following kidney transplantation, Nephron. 35:237–240 (1983).PubMedCrossRefGoogle Scholar
  38. 38.
    F.M. van’t Hooft, G.M. Dallinga-Thie, A. van Tol, Leupeptin as a tool for the detection of the sites of catabolism of rat high-density lipoprotein apolipoproteins A-I and E, Biochem. Biophys. Acta 388:75–84 (1985).Google Scholar
  39. 39.
    C.K. Glass, R.C. Pittman, G.A. Keller et al, Tissue sites of degradation of apoprotein A-I in the rat, J. Biol. Chem. 258:7161–7167 (1983).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • M. H. Tan
    • 1
  1. 1.Division of Endocrinology & Metabolism Department of MedicineDalhousie UniversityHalifaxCanada

Personalised recommendations