Advertisement

Speciation of HDL

  • John P. Kane
Part of the Advances in Experimetal Medicine and Biology book series (AEMB, volume 201)

Abstract

There is considerable inferential evidence that the high density lipoproteins (HDL) of mammalian plasma should have greater structural and functional heterogeneity than has been so far established. It is likely that at least transitory progenitors of HDL originating from hepatic and intestinal cells will differ from one another, perhaps forming discrete series of particles. The diverse metabolic processes in which HDL participate in plasma are likely to require still further determinative speciation. Some speciation will no doubt reflect low free energy combination states determined by the interactive energetics and stereochemistry of their constitutive elements. However, kinetic speciation is likely to account for accumulation of some particle species, that is, in concatenated processes, intermediaries with the lowest rate constants of removal tend to accumulate. An accurate assessment of particle populations in plasma must take into account the fact that chemical processes will tend to move toward thermodynamic equilibrium after sampling, thus altering the distribution of species. Approaches to the study of lipoprotein speciation must therefore include the use of techniques which allow for the isolation of transitory or thermodynamically unstable particles and which do not introduce perturbations of structure. In the following we will discuss the plurality of roles for HDL and evidence that these lipoproteins comprise a number of discrete subpopulations.

Keywords

High Density Lipoprotein High Density Lipo Cholesteryl Ester Transfer Protein Plasma High Density Lipoprotein High Density Lipo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. L. Hamilton, Synthesis and secretion of plasma lipoproteins, in “Phamacological Control of Lipid Metabolism,” W. L. Holmes, R. Paoletti, and D. Kritchevsky, eds., Plenum Press, New York (1972).Google Scholar
  2. 2.
    R. J. Havel, J. P. Kane, and J. L. Kashyap, Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man, J. Clin. Invest. 52:32 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    S. Eisenberg, and R. I. Levy, Lipoprotein metabolism, Adv. Lipid Res. 13:1 (1975).PubMedGoogle Scholar
  4. 4.
    E. Polz, L. Kotite, R. J. Havel, J. P. Kane, and T. Sata, Human apo-lipoprotein C-I: concentration in blood serum and lipoproteins, Biochem. Med. 24:229 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    K. Imaizumi, M. Fainaru, and R. J. Havel, Composition of proteins of mesenteric lymph chylomicrons in the rat and alterations produced upon exposure of chylomicrons to blood serum and serum lipoproteins, J. Lipid Res. 19:712 (1978).PubMedGoogle Scholar
  6. 6.
    K. Imaizumi, R.J. Havel, M. Fainaru, and J.-L. Vigne, Origin and transport of the A-I and arginine-rich apolipoprotein mesenteric lymph of rats, J. Lipid Res. 19:1038 (1978).PubMedGoogle Scholar
  7. 7.
    J. R. Patsch, A. M. Gotto, T. Olivecrona, and S. Eisenberg, Formation of high density lipoprotein-like particle during lipolysis of very low density lipoproteins in vitro, Proc. Natl. Acad. Sci. USA 75:4519 (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    M. R. Taskinen, M. L. Kashyap, L. S. Srivastava, M. Ashraf, J. D. Johnson, G. Perisutti, D. Brady, C. J. Glueck, and R. L. Jackson, In vitro catabolism of human plasma very low density lipoproteins: effects of VLDL concentration on the interconversions of high density liporotein subfractions, Atherosclerosis 41:381 (1982).PubMedCrossRefGoogle Scholar
  9. 9.
    A. R. Tall, P. H. R. Green, R. M. Glickman, and J. W. Riley, Metabolic fate of chylomicron phospholipids and apoproteins in the rat, J. Clin. Invest. 64:977 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    T. G. Redgrave, and D. M. Small, Quantitation of the transfer of surface phospholipid of chylomicrons to the high density lipoprotein fraction during the catabolism of chylomicrons in the rat, J. Clin. Invest. 64:162 (1979).PubMedCrossRefGoogle Scholar
  11. 11.
    A. R. Tall, C. B. Blum, G. P. Forester, and C. A. Nelson, Changes in the distribution and composition of plasma high density lipoproteins after ingestion of fat, J. Biol. Chem. 257:198 (1982).PubMedGoogle Scholar
  12. 12.
    M. Mattock, A. Salter, T. Omer, and H. Keen, Changes in high density lipoprotein fractions during alimentary lipemia, Experientia 37:945 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    C. J. Fielding, and P. E. Fielding, Cholesterol transport between cells and body fluids, Med. Clin. North Am. 66:363 (1982).PubMedGoogle Scholar
  14. 14.
    T. Chajek, and C. J. Fielding, Isolation and characterization of a human serum cholesteryl ester transfer protein, Proc. Natl. Acad. Sci. USA 75:3445 (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    C. J. Fielding, and P. E. Fielding, Metabolism of cholesterol and lipoproteins, in “Biochemistry of Lipids and Membranes,” D. E. Vance and J. E. Vance, eds., Benjamin/Cummings Publishing Co., Menlo Park, CA (1985).Google Scholar
  16. 16.
    G. Schonfeld, P. K. George, J. Miller, P. Reilly, and J. Witztum, Apolipoprotein C-II and C-III levels in hypolipoproteinemia, Metabolism 28:1001 (1979).PubMedCrossRefGoogle Scholar
  17. 17.
    J. P. Kane, Plasma lipoproteins: structure and metabolism, in “Lipid Metabolism in Mammals, Plenum Press, New York, (1977).Google Scholar
  18. 18.
    J. P. Tauber, J. Cheng, S. Massoglice, and D. Gospodarowicz, High density lipoproteins and the growth of vascular endothelial cells in serum-free medium, In Vitro 17:519 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    S. D. Carson, Plasma high density lipoproteins inhibit the activation of coagulation factor X by factor VIIa and tissue factor, FEBS Lett 132:37 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    T. W. Bareowcliffe, C. A. Eggleton, and J. Stocks, Studies of anti Xa activity in human plasma V: the role of lipoproteins, Thromb. Res. 27:185 (1982).CrossRefGoogle Scholar
  21. 21.
    W. E. Ormerod, and S. Venkatesan, Similarities of lipid metabolism in mammalian and protozoan cells: An evolutionary hypothesis for the prevalence of atheroma, Microbiol. Rev. 46:296 (1982).PubMedGoogle Scholar
  22. 22.
    M. R. Rifkin, Interaction of high density lipoprotein with Trypanosoma Brucei: effect of membrane stabilizers, J. Cell. Biochem. 23:57 (1983).PubMedCrossRefGoogle Scholar
  23. 23.
    J. Dhondt, N. Van Meirvenne, L. Moeus, and M. Kondo, Ca2+ is essential cofactor for trypanocidal activity of normal human serum, Nature 282:613 (1979).CrossRefGoogle Scholar
  24. 24.
    J. P. Kane, D. A. Hardman, J. C. Dimpfl, and J. A. Levy, Apolipoprotein is responsible for neutralization of xenotropic type C virus by mouse serum, Proc. Natl. Acad. Sci. USA 76:5957 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    J. A. Levy, J. Dimpfl, D. Hardman, and J. P. Kane, Transfer of mouse anti-xenotropic virus neutralizing factor to human lipoproteins, J. Virology 42:365 (1982).PubMedGoogle Scholar
  26. 26.
    R. J. Ulevitch, A. R. Johnston, and D. B. Weinstein, New function for high density lipoproteins-isolation and characterization of a bacterial pepopolysaccharide high density lipoprotein complex formed in rabbit plasma, J. Clin. Invest. 67:827 (1981).PubMedCrossRefGoogle Scholar
  27. 27.
    C. L. Malmendier, and J. P. Ameryckx, Apoprotein S, a family of human serum lipoprotein polypeptides, Atherosclerosis 42:161 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    T. F. Lint, C. L. Behrends, and H. Gewürz, Serum lipoproteins and C-567-INH activity, J. Immunol. 119:883 (1977).PubMedGoogle Scholar
  29. 29.
    M. Fainaru, M. C. Glangeaud, and S. Eisenberg, Radioimmunoassay of human high density lipoprotein apoprotein A-I, Biochim. Biophys. Acta 386:432 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    M. Fainaru, R. J. Havel, and T. E. Felker, Radioimmunoassay of apolipoprotein A-I of rat serum, Biochim. Biophys. Acta 446:56 (1976).PubMedCrossRefGoogle Scholar
  31. 31.
    M. D. Curry, P. Alaupovic, and C. A. Suenram, Determination of apolipoprotein A-I and A-II polypeptides by separate electroimmunoassays, Clin. Chem. 22:315 (1976).PubMedGoogle Scholar
  32. 32.
    R. W. Mahley, and K. S. Holcombe, Alterations of the plasma lipoproteins and apoproteins following cholesterol feeding in the rat, J. Lipid Res. 18:314 (1977).PubMedGoogle Scholar
  33. 33.
    S. T. Kunitake, and J. P. Kane, Factors affecting the integrity of high density lipoproteins in the ultracentrifuge, J. Lipid Res. 23:936 (1982).PubMedGoogle Scholar
  34. 34.
    D. W. Anderson, A. V. Nichols, T. M. Foote, and F. T. Lindgren, Particle distribution of human serum high density lipoproteins, Biochim. Biophys. Acta 493:55 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    G. M. Kostner, J. R. Patsch, S. Sailer, H. Braunsteiner, and A. Holasek. Polypeptide distribution of the main lipoprotein density classes separated by ratezonal ultracentrifugation, Eur. J. Biochem. 45:611 (1974).PubMedCrossRefGoogle Scholar
  36. 36.
    B. H. Chung, J. P. Segrest, J. T. Cone, J. Pfau, J. C. Geer, and L. A. Duncan, High resolution plasma lipoprotein cholesterol profiles by a rapid, high volume semiautomated method, J. Lipid Res. 22:1003 (1981).PubMedGoogle Scholar
  37. 37.
    G. Utermann, Disc-electrophoresis patterns of human serum high density lipoproteins, Clin. Chim. Acta 36:521 (1972).PubMedCrossRefGoogle Scholar
  38. 38.
    J. Janecki, and A. Fijalkowska, A simple method of quantitative estimation of the subfractions of human small molecular diameter lipoproteins, J. Clin. Chem. Clin. Biochem. 17:789 (1979).PubMedGoogle Scholar
  39. 39.
    S. L. Mackenzie, G. S. Sundaram, and H. S. Sodhi, Heterogeneity of human serum high density lipoprotein (HDL3), Clin. Chim. Acta 43:223 (1973).PubMedCrossRefGoogle Scholar
  40. 40.
    P. J. Blanche, E. L. Gong, T. M. Forte, and A. V. Nichols, Characterization of human high density lipoproteins by gradient gel electro-phoresis, Biochim. Biophys. Acta 665:408 (1981).PubMedCrossRefGoogle Scholar
  41. 41.
    G. Bittolo Bon, G. Cazzolato, and P. Avogaro, Preparative isotachophoresis of human plasma high density lipoproteins HDL2 and HDL3, J. Lipid Res. 22:998 (1981).Google Scholar
  42. 42.
    L. L. Rudel, J. A. Lee, M. D. Morris, and J. M. Felts, Characterization of plasma lipoproteins separated by agarose-column chromatography. Biochem. J. 139:89 (1974).PubMedGoogle Scholar
  43. 43.
    T. Mitamura, Separation of cholesterol-induced high density lipoprotein (HDLc) by concanavalin A-sepharose affinity chromatography, J. Biochem. 91:25 (1982).PubMedGoogle Scholar
  44. 44.
    Y. L. Marcel, C. Vezina, D. Emond, and G. Suzue, Heterogeneity of human high density lipoprotein: presence of lipoproteins with and without apo E and their roles as substrates for lecithin:cholesterol acyltransferase reaction, Proc. Natl. Acad. Sci. USA 77:2969 (1980).PubMedCrossRefGoogle Scholar
  45. 45.
    K. H. Weisgraber, and R. W. Mahley, Subfractionation of human high density lipoproteins by heparin-sepharose affinity chromatography. J. Lipid Res. 21:316 (1980).PubMedGoogle Scholar
  46. 46.
    J. P. McVicar, S. T. Kunitake, R. L. Hamilton, and J. P. Kane, Characteristics of human lipoproteins isolated by selected-affinity immuno-sorption of apolipoprotein A-I, Proc. Natl. Acad. Sci. USA 81:1356 (1984).PubMedCrossRefGoogle Scholar
  47. 47.
    M. C. Cheung, and J. J. Albers, Characterization of lipoprotein particles isolated by immunoaffinity chromatography, J. Biol. Chem. 259:12201 (1984).PubMedGoogle Scholar
  48. 48.
    S. T. Kunitake, K. J. La Sala, and J. P. Kane, Apoprotein A-I-containing lipoproteins with pre-beta electrophoretic mobility, J. Lipid Res. 25:549 (1985).Google Scholar
  49. 49.
    S. T. Kunitake, B. Ishida, C. J. Fielding, and J. P. Kane, Apoprotein (apo) A-I-containing lipoproteins with prebeta electrophoretic mobility: conversion to lipoproteins with alpha mobility, Circulation 72:III:92 (1985).Google Scholar
  50. 50.
    C. M. Mendel, S. T. Kunitake, and J. P. Kane, Discrimination between subclasses of human high density lipoproteins by the HDL binding sites of bovine liver, Biochim. Biophys. Acta 875:59 (1986).PubMedCrossRefGoogle Scholar
  51. 51.
    M. J. Malloy, K. J. La Sala, S. T. Kunitake, and J. P. Kane, unpublished results.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • John P. Kane
    • 1
  1. 1.Cardiovascular Research InstituteUniversity of CaliforniaSan FranciscoUSA

Personalised recommendations