Advertisement

Primary Lipoprotein Lipase Deficiency

  • John D. Brunzell
  • Per-Henrik Iverius
  • Mark S. Scheibel
  • Wilfred Y. Fujimoto
  • Michael R. Hayden
  • Roger McLeod
  • Jiri Frolich
Part of the Advances in Experimetal Medicine and Biology book series (AEMB, volume 201)

Abstract

The enzyme lipoprotein lipase (LPL) is a glycoprotein located on the luminal surface of capillary endothelial cells (see reviews: 1–4). It is bound to a glycosaminoglycan on the endothelium, can be displaced into plasma by intravenous heparin or other polyanions, and binds to heparin-Sepharose gels. The enzyme has an apparent monomeric molecular weight on SDS gel of over 60,000 and 48,300 by sedimentation-equilibrium ultracentrifugation, and probably functions as a dimer in vivo. It has binding sites for heparin, for the cofactor apolipoprotein CII, and for lipid, and has a separate catalytic site for triglyceride hydrolysis. It is inhibited by serine proteases inhibitors, by protamine, and by high ionic strength. The enzyme appears to be synthesized in a number of different parenchymal cells including monocyte-derived macrophages, Kupfer cells, adipocytes, and cells in cardiac and skeletal muscle. The enzyme is secreted from the adipocyte and transported in an unknown fashion to the plasma surface of the capillary endothelial cell, where it has several functions in humans.

Keywords

Lipoprotein Lipase Lipoprotein Lipase Activity High Density Lipopro Postheparin Plasma Adipose Tissue Lipoprotein Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Nilsson-Ehle, A. S. Garfinkel, and M. C. Schotz, Lipolytic enzymes and plasma lipoprotein metabolism, Ann. Rev. Biochem. 49:667–93 (1980).PubMedCrossRefGoogle Scholar
  2. 2.
    P. K. J. Kinnunen, J. A. Virtanen, and P. Vainio, Lipoprotein lipase and hepatic endothelial lipase: Their roles in plasma lipoprotein metabolism, in: “Atherosclerosis Reviews,” vol. 11, A. M. Gotto, Jr., and R. Paoletti, eds., Raven Press, New York (1983). pp. 65–105.Google Scholar
  3. 3.
    R. L. Jackson, Lipoprotein lipase and hepatic lipase, in: “The Enzymes,” vol. 16, P.D. Boyer, ed., Academic Press (1983), pp. 141-181.Google Scholar
  4. 4.
    A. Cryer, Tissue lipoprotein lipase activity and its action in lipoprotein metabolism, Int. J. Biochem. 13:525–541 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    P. Magill, S. N. Rao, N. E. Miller, A. Nicoll, J. Brunzell, J. St. Hilaire, and B. Lewis, Relationships between the metabolism of high density and very-low-density lipoproteins in man: Studies of apolipoprotein kinetics and adipose tissue lipoprotein lipase activity, Eur. J. Clin. Invest. 12:113–120 (1982).PubMedCrossRefGoogle Scholar
  6. 6.
    R. S. Schwartz, and J. D. Brunzell, Adipose tissue lipoprotein lipase and obesity, in: “Recent Advances in Obesity Research: III,” P. Bjorntorp, M. Cairetla, and A. N. Howard, eds., John Libbey and Co., London (1981). pp. 94–98.Google Scholar
  7. 7.
    E. A. Nikkila, M. R. Taskinen, and M. Kekki, Relation of plasma high density lipoprotein cholesterol to lipoprotein-lipase activity in adipose tissue and skeletal muscle of man, Atherosclerosis 29:497–501, (1978).PubMedCrossRefGoogle Scholar
  8. 8.
    R. S. Lees, D. E. Wilson, G. Schonfeld, and S. Fleet, The familial dyslipoproteinemias, in: “Progress in Medical Genetics,” vol. 9, A. G. Steinberg, and A. G. Beam, eds., Grune and Stratton, New York (1973). pp. 237–259.Google Scholar
  9. 9.
    R. J. Gordon and R. S. Havel, Jr., Idiopathic hyperlipemia: Metabolic studies in an affected family, J. Clin. Invest. 39:1777–1790 (1960).PubMedCrossRefGoogle Scholar
  10. 10.
    W. R. Harlan, Jr., P. S. Winesett, and A. J. Wasserman, Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat, J. Clin. Invest. 46:239–247 (1967).PubMedCrossRefGoogle Scholar
  11. 11.
    R. M. Krauss, R. I. Levy, and D. S. Fredrickson, Selective measurement of two lipase activities in postheparin plasma from normal subjects and patients with hyperlipoproteinemia, J. Clin. Invest. 54:1107–1124 (1974).PubMedCrossRefGoogle Scholar
  12. 12.
    D. S. Levy, and R. I. Fredrickson, Familial hyperlipoproteinemia, in: “The Metabolic Basis of Inherited Disease,” 3rd ed., J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds., McGraw-Hill, New York (1972). pp. 545–611.Google Scholar
  13. 13.
    W. V. Brown, M. L. Baginsky, and C. Ehnholm, Primary type I and type V hyperlipoproteinemia,in: “Hyperlipidemia: Diagnosis and Therapy,” B. M. Rifkind, and R. I. Levy, eds., Grune and Stratton, New York/San Francisco/London, (1977). pp. 93–112.Google Scholar
  14. 14.
    E. A. Nikkilä, Familial lipoprotein lipase deficiency and related disorders of chylomicron metabolism, in: “Disorders of Lipoprotein and Lipid Metabolism,” vol. 5, J. B. Stanbury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds., McGraw-Hill Book Co., New York (1983), pp. 622–642.Google Scholar
  15. 15.
    J. D. Brunzell, and E. L. Bierman, Chylomicronemia syndrome: Interaction of genetic and acquired hypertriglyceridemia, in: “Medical Clinics on Lipid Disorders,” R. J. Havel, ed., W. B. Saunders Co., Philadelphia, Med. Clin. N. Am. 66:455-468 (1982).Google Scholar
  16. 16.
    J. L. Knittle, and E. H. Ahrens, Jr., Carbohydrate metabolism in two forms of hyperglyceridemia, J. Clin. Invest. 43:485–491 (1964).PubMedCrossRefGoogle Scholar
  17. 17.
    A. Chait, and J. Brunzell, Very low density lipoprotein kinetics in familial forms of hypertriglyceridemia, in: “Lipoprotein Kinetics and Modeling,” M. Berman, S. Grundy, and B. Howard, eds., Academic Press, New York (1982). pp. 69–76.Google Scholar
  18. 18.
    E. Manzato, R. Marin, A. Gasparotto, G. Baggio, R. Fellin, and G. Crepaldi, The plasma lipoproteins in familial chylomicronemia: Analysis by zonal ultracentrifugation, J. Lab. Clin. Med. 104:778–788 (1984).PubMedGoogle Scholar
  19. 19.
    J. D. Brunzell, A. Chait, E. A. Nikkilä C. Ehnholm, J. K. Huttunen, and G. Steiner, Heterogeneity of primary lipoprotein lipase deficiency, Metabolism 29:624–629 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    A. Chait, P.-H. Iverius, and J. Brunzell, Lipoprotein lipase secretion by human monocyte-derived macrophages, J. Clin. Invest. 69:490–493 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    F. Vogel, and A.G. Motulsky, “Human Genetics,” Springer-Verlag, New York (1982), pp. 416–422.Google Scholar
  22. 22.
    H. J. Sternowsky, U. Gaertner, N. Stahnke, and E. Kaukel, Juvenile familial hypertriglyceridemia and growth retardation: Clinical and bio-chemical observations in three siblings, Eur. J. Pediat. 125:59–70 (1977).CrossRefGoogle Scholar
  23. 23.
    E. Seemanover, A study of children of incestuous mating, Human Genetics 21:108–128 (1971).Google Scholar
  24. 24.
    C. Gagne, D. Brun, S. Moorjani, and P.-J. Lupien, Hyperchylomicronémie familiale: Etude de l’activité lipolytique dans une famille, Un, Med. Canada 106:333–338 (1977).Google Scholar
  25. 25.
    J. M. Potter, and W. B. Macdonald, Primary type I hyperlipoproteinaemia: A metabolic and family study, Aust. N.Z. J. Med. 9:688–693 (1979).CrossRefGoogle Scholar
  26. 26.
    R. Fellin, G. Baggio, A. Poli, J. Augustin, M. R. Baiocchi, G. Baldo, M. Sinigaglia, H. Greten, and G. Crepaldi, Familial lipoprotein lipase and apolipoprotein C-II deficiency: Lipoprotein and apoprotein analysis, adipose tissue and hepatic lipoprotein lipase levels in seven patients and their first degree relatives, Atherosclerosis 49:55–68 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    D. E. Wilson, C. Q. Edwards, and I.-F. Chan, Phenotypic heterogeneity in the extended pedigree of a proband with lipoprotein lipase deficiency, Metabolism 32:1107–1114 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    Y. Kondo, I. Kurobane, K. Omura, R. Sano, R. Abe, N. Chida, and K. Tada, Postheparin plasma lipoprotein lipase activity in heterozygotes of familial lipoprotein lipase deficiency, Tohoku J. Exp. Med. 145:1–6 (1985).PubMedCrossRefGoogle Scholar
  29. 29.
    G. Steiner, J. J. Myher, and A. Kuksis, Milk and plasma lipid composition in a lactating patient with type I hyperlipoproteinemia, Am. J.Clin. Nutr. 41:121–128 (1985).PubMedGoogle Scholar
  30. 30.
    B. K. Burton, and H. L. Nadler, Primary type I hyperlipoproteinemia with normal lipoprotein lipase activity, J. Pediat. 90:777–779 (1977).PubMedCrossRefGoogle Scholar
  31. 31.
    P.-H. Iverius, and J. D. Brunzell, Human adipose tissue lipoprotein lipase: Changes with feeding and relation to postheparin plasma, Am. J. Physiol. 249:E107–E114 (1985).PubMedGoogle Scholar
  32. 32.
    W. C. Breckenridge, J. A. Little, G. Steiner, A. Chow, and M. Poapst, Hypertriglyceridemia associated with deficiency of apolipoprotein C-II, N. Eng. J. Med. 298:1265–1273 (1978).CrossRefGoogle Scholar
  33. 33.
    J. R. Paterniti, W. V. Brown, H. N. Ginsberg, and K. Artzt, Combined lipase deficiency (eld): A lethal mutation on chromosome 17 of the mouse, Science (Washington, D.C.) 221:167–169 (1983).CrossRefGoogle Scholar
  34. 34.
    T. Olivecrona, S. S. Chernick, G. Bengtsson-Olivecrona, J. R. Paterniti, Jr., W. V. Brown, and R. O. Scow, Combined lipase deficiency (cld/cld) in mice: Demonstration that an inactive form of lipoprotein lipase is synthesized, J. Biol. Chem. 260:2552–2557 (1985).PubMedGoogle Scholar
  35. 35.
    J. D. Brunzell, N. E. Miller, P. Alaupovic, R. J. St. Hilaire, C. S. Wang, D. L. Sarson, S. R. Bloom, and B. Lewis, Familial chylomicronemia due to a circulating inhibitor of lipoprotein lipase activity, J. Lip idRes. 24:12–19 (1983).Google Scholar
  36. 36.
    A. F. H. Stalenhoef, A. F. Casparie, P. N. M. Demacker, J. T. J. Stouten, J. A. Lutterman, and A. van’t Laar, Combined deficiency of apolipoprotein C-II and lipoprotein lipase in familial hyperchylo-micronemia, Metabolism 30:919–926 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    S. W. J. Lamberts, A. F. Casparie, K. Miedema, G. Hennemann, and H. A. M. Hulsmans, Thyroxine binding globulin deficiency in a family with type I hyperlipoproteinaemia, Clin. Endocrinol. 6:197–206 (1977).CrossRefGoogle Scholar
  38. 38.
    I. J. Goldsberg, J. R. Paterniti, Jr., B. H. Franklin, H. N. Ginsberg, F. Ginsberg-Fellner, and W. V. Brown, Case report: Transient lipoprotein lipase deficiency with hyperchylomicronemia, Am, J. Med. Sci. 286:28–31 (1983).CrossRefGoogle Scholar
  39. 39.
    E. Shadfir, and Y. Biale, Effect of experimental hypertriglyceridemia on tissue and serum lipoprotein lipase activity, Eur. J. Clin. Invest. 1:19–24 (1970).CrossRefGoogle Scholar
  40. 40.
    A. H. Kissebah, P. W. Adams, and V. Wynn, Plasma free fatty acid and triglyceride transport kinetics in man, Clin. Sci. Mol. Med. 47:259–278 (1974).PubMedGoogle Scholar
  41. 41.
    A. Horst, J. Paluszak, K. Zawilska, and S. Sobisz, Three variants of postheparin lipoprotein lipase activity in idiopathic hyperlipoprotein-emia, Bull. Acad. Pol. Sci. 21:199–202 (1973).Google Scholar
  42. 42.
    J. M. Hoeg, J. C. Osborne, Jr., R. E. Gregg, and H. B. Brewer, Jr., Initial diagnosis of lipoprotein lipase deficiency in a 75-year-old man, Am. J. Med. 75:889–892 (1983).PubMedCrossRefGoogle Scholar
  43. 43.
    S. K. Karathanasis, R. A. Norum, V. I. Zannis, and J. L. Breslow, A mutation in the human apo A-I gene locus related to the development of atherosclerosis, Nature 301:718–720 (1983).PubMedCrossRefGoogle Scholar
  44. 44.
    L. Jonasson, G. K. Hansson, G. Bondjers, G. Bengtsson, and T. Olivecrona, Immunohistochemical localization of lipoprotein lipase in human adipose tissue, Atherosclerosis 51:313–326 (1984).PubMedCrossRefGoogle Scholar
  45. 45.
    J. C. Voyta, D. P. Via, P. K. J. Kinnunen, J. T. Sparrow, A. M. Gotto, Jr., and L. C. Smith, Monoclonal antibodies against bovine milk lipoprotein lipase: Characterization of an antibody specific for the apolipoprotein C-II binding site, J. Biol. Chem. 260:893–898 (1985).PubMedGoogle Scholar
  46. 46.
    L. Socorro, and R. L. Jackson, Monoclonal antibodies to bovine milk lipoprotein lipase: Evidence for proteolytic degradation of the native enzyme, J. Biol. Chem. 260:6324–6328 (1985).PubMedGoogle Scholar
  47. 47.
    M. Scheibel, P. Iverius, J. Brunzell, and W. Fujimoto, Measurement of human lipoprotein lipase by enzyme-linked immunosorbent assay (ELISA) using a single monoclonal antibody, Fed. Proc. 44:1156 (1985).Google Scholar
  48. 48.
    M. S. Scheibel, P.-H. Iverius, J. D. Brunzell, and W. Y. Fujimoto, An enzyme-linked immunosorbent assay for human postheparin plasma lipoprotein lipase, Submitted.Google Scholar
  49. 49.
    M. E. Pedersen, M. Cohen, and M. C. Schotz, Immunocytochemical localization of the functional fraction of lipoprotein lipase in the perfused heart, J. Lip id Res. 24:512–521 (1983).Google Scholar
  50. 50.
    J. Etienne, L. Noé, M. Rossignol, C. Arnaud, N. Vydelingum, and A. H. Kissebah, Antibody against rat adipose tissue lipoprotein lipase, Biochim. Biophys. Acta 834:95–102 (1985).PubMedCrossRefGoogle Scholar
  51. 51.
    J. D. Brunzell, Endocrine disorders and adipose tissue lipoprotein lipase, in: “Lipoprotein Metabolism and Endocrine Regulation,” L. W. Hessel, and H. M. J. Krans, eds., Elsevier/North Holland Biomedical Press, New York (1979), pp. 27–34.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • John D. Brunzell
    • 1
  • Per-Henrik Iverius
    • 1
  • Mark S. Scheibel
    • 1
  • Wilfred Y. Fujimoto
    • 1
  • Michael R. Hayden
    • 2
  • Roger McLeod
    • 2
  • Jiri Frolich
    • 2
  1. 1.University of WashingtonSeattleUSA
  2. 2.University of British ColumbiaVancouverCanada

Personalised recommendations