Metabolic Interrelationships of HDL Subclasses

  • Ronald M. Krauss
  • Alex V. Nichols
Part of the Advances in Experimetal Medicine and Biology book series (AEMB, volume 201)


Levels of plasma HDL are determined by a complex array of metabolic processes involving synthesis, transfer, recycling, and tissue uptake of individual apoprotein and lipid components1. At equilibrium, these components are organized within a variety of particulate forms, and detailed understanding of HDL metabolism requires consideration of factors responsible for this macromolecular heterogeneity. The first description of the HDL particle spectrum identified three major forms of HDL based on flotation rates (F°1.20) in the analytic ultracentrifuge2: HDL1, of F°1.20>9 and density overlapping with LDL; HDL2, of F°1.20 3.5–9 (d 1.063–1.125 g/ml), and HDL3, of F°1.200–3.5 (d 1.125–1.200 g/ml). Figure 1 shows the analytic ultracentrifuge pattern of HDL2 and HDL3 in a representative normal subject, as well as the HDL profile as revealed by zonal ultracentrifugation3 and electrophoresis of HDL in native polyaerylamide gradient gels4. Each of these procedures has revealed further heterogeneity within the HDL2 and HDL3 density subclasses. In the case of gradient gel electrophoresis, heterogeneity is manifest as multiple electrophoretic bands which have been shown to represent distinct HDL subspecies of differing particle size.


Immunoaffinity Chromatography Plasma High Density Lipoprotein High Density Lipo Fractional Catabolic Rate Flotation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eisenberg, S.,, 1984. High density lipoprotein metabolism, J. Lipid Res., 25:1017–1058.PubMedGoogle Scholar
  2. 2.
    Lindgren, F.T., Jensen, L.C., and Hatch, F.T., 1972, The isolation and quantitative analysis of serum lipoproteins, in: Blood Lipids and Lipoproteins, Nelson, G.J., ed., John Wiley-Interscience, New York, pp. 181–274.Google Scholar
  3. 3.
    Patsch, V., Schonfeld, G., Gotto, A.M., Jr., and Patsch, J.R.,, 1980. Characterization of human high density lipoproteins by zonal ultracentrifugation, J. Biol. Chem., 255:3178–3185.PubMedGoogle Scholar
  4. 4.
    Nichols, A.V., Blanche, P.J., and Gong, E.L., 1983, Gradient gel electrophoresis of human plasma high density lipoproteins, in: “CRC Handbook of Electrophoresis”, Vol. III, Lewis, L. and Opplt, J. eds., CRC Press, Boca Raton, pp. 29–47.Google Scholar
  5. 5.
    Lindgren, F.T., Nichols, A.V., Wood, P.D., Adamson, G.L., Austin, M.A., Glines, L.A., Martin, V., and Krauss, R.M., 1985, Intercorrelations of subfractions of LDL and HDL by gradient gel electrophoresis (GGE) and analytic ultracentrifugation (AnUC), submitted to A.H.A. 58th Scientific Sessions.Google Scholar
  6. 6.
    Cheung, M.C. and Albers, J.J.,, 1984. Characterization of lipoprotein particles isolated by immunoaffinity chromatography, J. Biol. Chem., 259:12201–12209.PubMedGoogle Scholar
  7. 7.
    Rao, S.N., Magill, P.J., Miller, N.E., and Lewis, B.,, 1980. Plasma high density lipoprotein metabolism in subjects with primary hypertri-glyceridemia: altered metabolism of apoproteins A-I and A-II, Clin. Sci., 59:359–367.PubMedGoogle Scholar
  8. 8.
    Fidge, N., Nestel, P., Ishikawa, T., Reardon, M., and Billington, T.,, 1980. Turnover of apoproteins A-I and A-II of human high density lipoprotein and the relationship to other lipoproteins in normal and hyperlipidemic individuals, Metabolism, 29:643–653.PubMedCrossRefGoogle Scholar
  9. 9.
    Schaefer, E.J., Zech, L.A., Jenkins, L.L., Bronzert, T.J., Rubalcaba, E.A., Lindgren, F.T., Aamodt, R.L., and Brewer, H.B., Jr.,, 1982. Human apolipoprotein A-I and A-II metabolism, J. Lipid Res., 23:850–862.PubMedGoogle Scholar
  10. 10.
    Schaefer, E.J., Foster, D.M., Zech, L.A., Lindgren, F.T., Brewer, H.B., Jr., and Levy, R.I.,, 1983. The effects of estrogen administration on plasma lipoprotein metabolism in premenopausal females, J. Clin. Endocrinol. Metab., 57:262–267.PubMedCrossRefGoogle Scholar
  11. 11.
    Magill, P., Rao, S.N., Miller, N.E., Nicoll, A., Brunzell, J., St. Hilaire, J., and Lewis, B.,, 1982. Relationships between the metabolism of high-density and very-low-density lipoproteins in man: studies of apolipoprotein kinetics and adipose tissue lipoprotein lipase activity, Eur. J. Clin. Invest., 12:113–120.PubMedCrossRefGoogle Scholar
  12. 12.
    Nikkila, E.A., Taskinen, M.R., and Kekki, M.,, 1978. Relation of plasma high density lipoprotein cholesterol to lipoprotein-lipase activity in adipose tissue and skeletal muscle of man, Atherosclerosis, 29:497–501.PubMedCrossRefGoogle Scholar
  13. 13.
    Patsch, J.R., Prasad, S., Gotto, A.M., Jr., and Bengtsson-Olivecrona, G.,, 1984. Postprandial lipemia: a key for the conversion of high density lipoprotein2 into high density lipoprotein3 by hepatic lipase, J. Clin. Invest., 74:2017–2023.PubMedCrossRefGoogle Scholar
  14. 14.
    Chang, L.B.F., Hopkins, G.J., and Barter, P.J.,, 1985. Particle size distribution of high density lipoproteins as a function of plasma triglyceride concentration in human subjects, Atherosclerosis, 56:61–70.PubMedCrossRefGoogle Scholar
  15. 15.
    Eisenberg, S., Gavish, D., Oschry, Y., Fainaru, M., and Deckelbaum, R.J.,, 1984. Abnormalities in very low, low, and high density lipoproteins in hypertriglyceridemia, J. Clin. Invest., 74:470–482.PubMedCrossRefGoogle Scholar
  16. 16.
    Tall, A.R., Blum, C.B., Forester, G.P., and Nelson, C.A.,, 1982. Changes in the distribution and composition of plasma high density lipoprotein after ingestion of fat, J. Biol. Chem., 257:198–207.PubMedGoogle Scholar
  17. 17.
    Nichols, A.V., Gong, E.L., and Blanche, P.J., 1981, Interconversion of high density lipoproteins during incubation of human plasma, Biochem. Biophys. Res. Commun. 100: 391–399.PubMedCrossRefGoogle Scholar
  18. 18.
    Dieplinger, H., Zechner, R., and Kostner, G.M.,, 1985. The in vitro formation of HDL2 during the action of L:CAT: the role of trigly-ceride-rich lipoproteins, J. Lipid Res., 26:273–2812.PubMedGoogle Scholar
  19. 19.
    Nichols, A.V., Blanche, P.J., Gong, E.L., Shore, V.S. and Forte, T.M.,, 1985. Molecular pathways in the transformation of model discoidal lipoprotein complexes induced by lecithin:cholesterol acyltransferase, Biochim. Biophys. Acta, 834:285–300.PubMedCrossRefGoogle Scholar
  20. 20.
    Krauss, R.M., Williams, P.T., Lindgren, F.T., and Wood, P.D., 1985, Coordinate changes in levels of human serum low and high density lipoprotein subclasses, submitted.Google Scholar
  21. 21.
    Wood, P.D., Haskell, W.L., Blair, S.N., Williams, P.T., Krauss, R.M., Lindgren, F.T., Albers, J.J., Ho, P.H., and Farquhar, J.W.,, 1983. Increased exercise level and plasma lipoprotein concentrations, Metabolism, 32:31–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Musliner, T.A., Giotas, C., and Krauss, R.M., 1986, Presence of multiple subpopulations of lipoproteins of intermediate density in plasma from normal and hyperlipidemic subjects. Arteriosclerosis, in press.Google Scholar
  23. 23.
    Krauss, R.M. and Burke, D.J.,, 1982. Identification of multiple subclasses of plasma low density lipoproteins in normal humans, J. Lipid Res., 23:97–104.PubMedGoogle Scholar
  24. 24.
    Krauss, R.M., Musliner, T.A., and Giotas, C.,, 1983. Differing content of low density lipoprotein precursors in subclasses of triglyceride-rich lipoproteins, Arteriosclerosis, 3:510a.Google Scholar
  25. 25.
    Musliner, T.A., McVicker, K.M., Iosefa, J.F., and Krauss, R.M., 1985, Metabolism of intermediate and very low density lipoprotein subfractions from normal and dysbetalipoproteinemic plasma: in vivo studies in rats, submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • Ronald M. Krauss
    • 1
  • Alex V. Nichols
    • 1
  1. 1.Donner Laboratory, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations