Skip to main content

Statistical Analysis of Drug Disposition Data

  • Chapter
Drug Studies in the Elderly

Abstract

Pharmacokinetics has become a rigorous science that attempts to relate the interaction of a drug with the biological environment into which it is introduced. Such a relationship is often described by proposing a mathematical model of the system and then using the data to define values for the unknown model parameters. Aris1 points out that “being derived from ‘modus’ (a measure) the word ‘model’ implies a change in representation.” That is, a model attempts to organize observations or measurements of the system under investigation into a form useful for hypothesis testing. The model parameters, which frequently must be determined from the observed data, function as measures for comparison of results within and between experiments. Based on this criterion, at least three tasks confront the analysts when faced with a data set: (1) to define a parametric model that best describes the system under investigation, (2) to estimate values for unknown model parameters, and (3) to determine whether the proposed model is a good or bad prototype of the system under investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aris R: Mathematical Modeling Techniques. London, Pitman Publishing Limited, 1979.

    Google Scholar 

  2. Berman M, Weiss MF: SAAM-27: User’s Manual. NIH Publication No. 78–180. Bethesda, MD, National Institutes of Health, 1978.

    Google Scholar 

  3. Knott GD: MLAB-A mathematical modeling tool. Comp Programs Biomed 1979; 10: 271.

    Article  CAS  Google Scholar 

  4. Jacquez JA: Compartmental Analysis in Biology and Medicine. Amsterdam, Elsevier, 1972.

    Google Scholar 

  5. Yamaoka Y, Nakagawa T, Uno T: Statistical moments in pharmacokinetics. J Pharmacokin Biopharm 1978; 6: 547–558.

    Article  CAS  Google Scholar 

  6. Covell DG, Berman M, DeLisi C: Mean residence time-theoretical development, experimental determination and practical usage in tracer analysis. Math Biosci 1984; 72: 213–244.

    Article  Google Scholar 

  7. Lawson CL, Hanson RJ: Solving Least Squares Problems. Englewood Cliffs, NJ, Prentice-Hall, 1974.

    Google Scholar 

  8. Berman M: The formulation and testing of models. Ann NY Acad Sci 1963; 108: 182–194.

    Article  PubMed  CAS  Google Scholar 

  9. Doob JL: Stochastic Processes. New York, John Wiley & Sons, Inc, 1953.

    Google Scholar 

  10. Lambrecht RM, Resigno A: Tracer Kinetics and Physiologic Modeling. Berlin, Springer-Verlag, 1983.

    Google Scholar 

  11. Boston RC, Greif PC, Berman M: Conversational SAAM-An interactive program for kinetic analysis of biological systems. Computer Programs Biomed 1981; 13: 111–119.

    Article  CAS  Google Scholar 

  12. Bard, Y: Nonlinear Parameter Estimation. New York, Academic Press, Inc, 1974.

    Google Scholar 

  13. Daniel C, Wood FS: Fitting Equations to Data. New York, Wiley-Interscience, 1971.

    Google Scholar 

  14. Wilde DJ, Beightler CS: Foundations of Optimization. Englewood Cliffs, NJ, Prentice-Hall, 1967.

    Google Scholar 

  15. Marquardt DW: An algorithm for least-squares estimation of nonlinear parameters. Society of Industrial and Applied Mathematics Journal 1963; 11: 431.

    Article  Google Scholar 

  16. Scheffe H: The Analysis of Variance. New York, John Wiley & Sons, Inc, 1959.

    Google Scholar 

  17. Rodbard D, Lenox RH, Wray HL, Ramseth D: Statistical characterization of the random errors in the radioimmunoassay dose-response variable. Clin Chem 1976; 22 (3): 350–358.

    PubMed  CAS  Google Scholar 

  18. Finny DJ, Phillips, P: The form and estimation of a variance function with particular reference to radioimmunoassay. Appi Statist 1977; 26 (3): 312–320.

    Article  Google Scholar 

  19. Jacquez JA, Norusis, M: Sampling experiments on the estimation of parameters in heteroscedastic linear regression. Biometrics 1973; 29: 771–779.

    Article  Google Scholar 

  20. Nichols AI, Peck, CC: ELSNLR-Users Manual, Technical Report No 5, Division of Clinical Pharmacology. Bethesda, MD, USUHS, 1981.

    Google Scholar 

  21. Draper NR, Smith H: Applied Regression Analysis. New York, John Wiley & Sons, Inc, 1963.

    Google Scholar 

  22. Netter J, Wasserman W: Applied Linear Statistical Models. Homewood, IL, RD Irwin, 1974.

    Google Scholar 

  23. Berman M: Information content of data with respect to models. Am J Physiol 1983; 245: 620–623.

    Google Scholar 

  24. Kramer WG, Lewis RP, Cobb TC, et al: Pharmacokinetics of digoxin: Comparison of a two and a three compartment model in man. J Pharmacokin Biopharm 1974; 2: 123.

    Article  Google Scholar 

  25. Rao CR: Estimation of heteroscedastic variances in linear models. J Am Stat Assoc 1970; 65: 161–172.

    Article  Google Scholar 

  26. Anscombe FJ, Tukey JW: The examination and analysis of residuals. Technometrics 1963; 5: 141.

    Article  Google Scholar 

  27. Mosteller F, Tukey JW: Data Analysis and Regression. Reading, MA, Addison-Wesley, 1977.

    Google Scholar 

  28. Siegel S: Nonparametric Statistics for the Behavioral Sciences. New York, McGraw-Hill, 1956.

    Google Scholar 

  29. Weber JE, Monarchi DE: Performance of the Durbin-Watson test and WLS estimation when the disturbance term includes serial dependence in addition to first-order autocorrelation. J Am Stat Assoc 1982; 17: 117.

    Article  Google Scholar 

  30. Wagner JG: Do you need a pharmacokinetic model, and if so, which one? J Pharmacok Biopharm 1975; 3: 457–478.

    Article  CAS  Google Scholar 

  31. Benet LZ: General treatment of linear mammillary models with elimination from any compartmental as used in pharmacokinetics. J Pharm Sci 1972; 61: 536–541.

    Article  PubMed  CAS  Google Scholar 

  32. Mandel J: The statistical analysis of experimental data. New York, Interscience, 1964.

    Google Scholar 

  33. Cobelli C, DiStefano JJ: Parameter and structural identifiability concepts and ambiguities: A critical review. Am J Physiol 1980; 239: R7 - R24.

    PubMed  CAS  Google Scholar 

  34. Bharucha-Reid AT: Elements of the Theory of Markov Processes and Their Applications. New York, McGraw-Hill, 1960.

    Google Scholar 

  35. Feller W: An Introduction to Probability Theory and Its Applications. New York, John Wiley & Sons, Inc, vol I, 1968.

    Google Scholar 

  36. Bailey NTJ: The Elements of Stochastic Processes with Applications to the Natural Sciences. New York, John Wiley & Sons, Inc, 1964.

    Google Scholar 

  37. Matis JH: On the stochastic theory of compartments: Solution for n-compartment systems with irreversible time-dependent transition probabilities. Bull Math Biol 1974; 36 (5/6): 489–504.

    Google Scholar 

  38. Purdue P: Variability in a single compartmental system: a note on SR Bernard’s model. Bull Math Biol 1981; 43: 111–114.

    Google Scholar 

  39. Rescigno A, Matis JH: On the relevance of stochastic compartmental models to pharmacokinetic systems. Bull Math Biol 1981; 43: 245–255.

    CAS  Google Scholar 

  40. Matis JH, Wehrly TE: Stochastic models of compartmental systems. Biometrics 1979; 35: 199–207.

    Article  Google Scholar 

  41. Robertson JS: Compartmental Distribution of Radiotracers. Boca Raton, FL, CRC Press Inc, 1983.

    Google Scholar 

  42. Sheiner LB, Rosenberg B, Marthae VV: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. J Pharm Biopharm 1977; 5 (5): 445–479.

    Article  CAS  Google Scholar 

  43. Stratonovich RL: A new representation for stochastic integrals and equations. Society of Industrial and Applied Mathematics Journal Control 1966; 4: 362–371.

    Google Scholar 

  44. Mortensen RE: Mathematical problems of modeling stochastic nonlinear dynamic systems. J Stat Physics 1969; 1 (2): 271–296.

    Article  Google Scholar 

  45. Kalman RE: A new approach to linear filtering and prediction problems. Trans ASME (J Basic Eng) 1960; 82: 35–45.

    Article  Google Scholar 

  46. Gelb A: Applied Optimal Estimation. Cambridge, MA, MIT Press, 1974.

    Google Scholar 

  47. Maybeck PS: Stochastic Models, Estimation and Control. New York, Academic Press, Inc, vol 1, 1979.

    Google Scholar 

  48. McIntosh JA, McIntosh RP: Monographs on Endocrinology, vol 16: Mathematical Modelling and Computers in Endocrinology. Heidelberg, Springer-Verlag, 1980, p. 95.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Publishing Corporation

About this chapter

Cite this chapter

Covell, D.G., Narang, P.K. (1986). Statistical Analysis of Drug Disposition Data. In: Cutler, N.R., Narang, P.K. (eds) Drug Studies in the Elderly. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1253-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1253-6_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1255-0

  • Online ISBN: 978-1-4684-1253-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics