Skip to main content

Role of Cyclic AMP in Modifying the Growth of Mammary Carcinomas

Genomic Regulation

  • Chapter
Biological Responses in Cancer

Abstract

It has become a widely held view that cyclic adenosine 3′,5′-monophosphate (cAMP), an intracellular chemical switch, regulates cellular growth and differentiation. The precise mechanism of cAMP action is, however, unknown at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bodwin, J. S., Clair, T., and Cho-Chung, Y. S., 1978, Inverse relation between estrogen receptors and cyclic adenosine 3’,5’-monophosphate-binding proteins in hormone-dependent mammary tumor regression due to dibutyryl cyclic adenosine 3’,5’-monophosphate treatment or ovariecttomy, Cancer Res. 38: 3410–3413.

    PubMed  CAS  Google Scholar 

  • Bodwin, J. S., Clair, T., and Cho-Chung, Y. S., 1980, Relationship of hormone-dependency to estrogen receptor and adenosine 3’,5’-cyclic monophosphate-binding proteins in rat mammary tumors, J. Natl. Cancer Inst. 64: 395–398.

    Google Scholar 

  • Bodwin, J. S., Hirayama, P. H., and Cho-Chung, Y. S., 1981a, Cyclic AMP-binding protein and estrogen receptor: Antagonism during nuclear translocation in a hormone-dependent mammary tumor, Biochem. Biophys. Res. Commun. 103: 1349–1355.

    Google Scholar 

  • Bodwin, J. S., Hirayama, P. H., Rego, J. A., and Cho-Chung, Y. S., 1981b, Regression of hormone-dependent mammary tumors in Sprague—Dawley rats as a result of tamoxifen or pharmacologic doses of 17ß-estradiol: Cyclic adenosine 3’,5’-monophosphate-mediated events, J. Natl. Cancer Inst. 66: 321–326.

    Google Scholar 

  • Bylund, D. B., and Krebs, E. G., 1975, Effect of denaturation on the susceptibility of proteins to enzymic phosphorylation, J. Biol. Chem. 250: 6355–6361.

    Google Scholar 

  • Cho-Chung, Y. S., 1974, In vivo inhibition of tumor growth by cyclic adenosine 3’,5’-monophosphate derivatives, Cancer Res. 34: 3492–3496.

    PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., 1978, Antagonistic action between cyclic adenosine 3’,5’-monophosphate and estrogen in rat mammary tumor growth control, Cancer Res. 38: 4071–4075.

    PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., 1979a, Cyclic AMP and tumor growth in vivo, in: Influence of Hormones on Tumor Development (J. A. Kellen and R. Hilf, eds.), Volume 1, CRC Press, Boca Raton, Fla., pp. 55–93.

    Google Scholar 

  • Cho-Chung, Y. S., 1979b, Minireview: On the interaction of cyclic AMP-binding protein and estrogen receptor in growth control, Life Sci. 24: 1231–1240.

    Google Scholar 

  • Cho-Chung, Y. S., 1980a, Cyclic AMP and mammary tumor regression, Cell. Mol. Biol. 26: 395–403.

    Google Scholar 

  • Cho-Chung, Y. S., 19806, Cyclic AMP and its receptor protein in tumor growth regulation in vivo, J. Cyclic Nucleotide Res. 6: 163–177.

    Google Scholar 

  • Cho-Chung, Y. S., 1982, Mode of cyclic AMP action in growth control, in: Hormonal Regulation of Mammary Tumors (B. S. Leung, ed.), Volume II, Eden Press, Montreal, pp. 155–177.

    Chapter  Google Scholar 

  • Cho-Chung, Y. S., and Clair, T., 1977, Altered cyclic AMP-binding and db cyclic AMP-unresponsiveness in vivo, Nature 265: 452–454.

    Article  PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., and Doud, F. J., 1978, Antagonistic action between cyclic AMP and estrogen in phosphorylation of mammary tumor nuclear proteins, Cancer Lett. 5: 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., and Gullino, P. M., 1973, Mammary tumor regression. VI. Synthesis and degradation of acid ribonuclease, J. Biol. Chem. 248: 4750–4755.

    Google Scholar 

  • Cho-Chung, Y. S., and Gullino, P. M., 1974a, In vivo inhibition of growth of two hormone-dependent mammary tumors by dibutyryl cyclic AMP, Science 183: 87–88.

    Article  PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., and Gullino, P. M., 19746, Brief communication: Effect of dibutyryl cyclic adenosine 3’,5’-monophosphate on in vivo growth of Walker 256 carcinoma: Isolation of responsive and unresponsive cell populations, J. Natl. Cancer Inst. 52: 995–996.

    Google Scholar 

  • Cho-Chung, Y. S., and Huang, F. L., 1984, Enhanced expression and suppression of c-ras“ oncogene during growth and regression of hormone-dependent mammary tumors, in: Advances in Gene Technology: Human Genetic Disorders ( F. Ahmad, S. Black, J. Schultz, W. A. Scott, and W. J. Welam, eds.), ICSU Press, Miami, pp. 142–143.

    Google Scholar 

  • Cho-Chung, Y. S., and Redler, B. H., 1977, Dibutyryl cyclic AMP mimics ovariectomy: Nuclear protein phosphorylation in mammary tumor regression, Science 197: 272–275.

    Google Scholar 

  • Cho-Chung, Y. S., Clair, T., and Huffman, P., 1977a, Loss of nuclear cyclic AMP-binding in cyclic AMP-unresponsive Walker 256 mammary carcinoma, J. Biol. Chem. 252: 6349–6355.

    Google Scholar 

  • Cho-Chung, Y. S., Clair, T., and Porper, R., 1977b, Cyclic AMP-binding proteins and protein kinase during regression of Walker 256 mammary carcinoma, J. Biol. Chem. 252: 6342–6348.

    Google Scholar 

  • Cho-Chung, Y. S., Clair, T., Yi, P. N., and Parkison, C., 1977c, Comparative studies on Cyclic AMP binding and protein kinase in cyclic AMP-responsive and unresponsive Walker 256 mammary carcinomas, J. Biol. Chem. 252: 6335–6341.

    Google Scholar 

  • Cho-Chung, Y. S., Bodwin, J. S., and Clair, T., 1978a, Cyclic AMP-binding protein: Inverse relationship with estrogen-receptors in hormone-dependent mammary tumor regression, Eur. J. Biochem. 86: 51–60.

    Google Scholar 

  • Cho-Chung, Y. S., Clair, T., and Zubialde, J. P., 1978b, Increase of cyclic AMP-dependent protein kinase type II as an early event in hormone-dependent mammary tumor regression, Biochem. Biophys. Res. Commun. 85: 1150–1155.

    Google Scholar 

  • Cho-Chung, Y. S., Archibald, D., and Clair, T., 1979, Cyclic AMP receptor triggers nuclear protein phosphorylation in a hormone-dependent mammary tumor cell-free system, Science 205: 1390–1392.

    Article  PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., Clair, T., Bodwin, J. S., and Hill, D. M., 1980, Arrest of mammary tumor growth in vivo by L-arginine: Stimulation of NAD-dependent activation of adenylate cyclase, Biochem. Biophys. Res. Commun. 95: 1306–1313.

    Google Scholar 

  • Cho-Chung, Y. S., Clair, T., Bodwin, J. S., and Berghoffer, B., 1981a, Growth arrest and morphological change of human breast cancer cells by dibutyryl cyclic AMP and L-arginine, Science 214: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., Clair, T., Schwimmer, M., and Steinberg, L., 1981b, Cyclic adenosine 3’,5’monophosphate receptor proteins in hormone-dependent and -independent rat mammary tumors, Cancer Res. 41: 1840–1846.

    PubMed  CAS  Google Scholar 

  • Cho-Chung, Y. S., Clair, T., Shepheard, C., and Berghoffer, B., 1983, Arrest of hormone-dependent mammary cancer growth in vivo and in vitro by cholera toxin, Cancer Res. 43: 1473–1476.

    PubMed  CAS  Google Scholar 

  • Christoffersen, T., and Br0nstad, G. 0., 1980, A commentary on the role of cyclic nucleotides in cell growth and malignancy, Prog. Pharmacol. 4: 117–135.

    Google Scholar 

  • Clair, T., and Cho-Chung, Y. S., 1984, Suppression of v-rases oncogene linked to the mouse mammary tumor virus promoter by cyclic AMP, Proc. Am. Assoc. Cancer Res. 25: 67.

    Google Scholar 

  • Corbin, J. D., Sugden, P. H., West, L., Flockhart, D. A., Lincoln, T. M., and McCarthy, D., 1978, Studies on the properties and mode of action of the purified regulatory subunit of bovine heart adenosine 3’,5’-monophosphate-dependent protein kinase, J. Biol. Chem. 253: 3997–4003.

    Google Scholar 

  • Costa, E., Kurosawa, A., and Guidotti, A., 1976, Activation and nuclear translocation of protein kinase during transsynaptic induction of tyrosine 3-monooxygenase, Proc. Natl. Acad. Sci. USA 73: 1058–1062.

    Google Scholar 

  • Daniel, V., Litwack, G., and Tomkins, G. M., 1973, Induction of cytolysis of cultured lymphoma cells by adenosine 3’,5’-cyclic monophosphate and the isolation of resistant variants, Proc. Natl. Acad. Sci. USA 70: 76–79.

    Google Scholar 

  • Dubpernell, S. A., and Gavurin, L., 1978, The effect of cyclic AMP on the growth and morphology of a normal human fibroblast parent strain and its transformed progeny line, Cell Differ. 7: 375–386.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R. W., DeFeo, D., Shih, T. Y., Gonda, M. A., Young, H. A., Tsuchida, N., Lowy, D. R., and Scolnick, E. M., 1981, The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes, Nature 292: 506–511.

    Article  PubMed  CAS  Google Scholar 

  • Erlichman, J., Rosenfeld, R., and Rosen, 0. M., 1974, Phosphorylation of a cyclic adenosine 3’,5’-monophosphate-dependent protein kinase from bovine cardiac muscle, J. Biol. Chem. 249: 5000–5003.

    Google Scholar 

  • Furth, M. E., Davis, L. J., Fleurdelys, B., and Scolnick, E. M., 1982, Monoclonal antibodies to the p21 products of the transforming gene of Harvey murine sarcoma virus and of the cellular ras gene family, J. Virol. 43: 294–304.

    PubMed  CAS  Google Scholar 

  • Handschin, J. C., and Eppenberger, U., 1979, Altered cellular ratio of type I and type II cyclic AMP-dependent protein kinase in human mammary tumors, FEBS Lett. 106: 301–304.

    Article  PubMed  CAS  Google Scholar 

  • Handschin, J. C., Handlaser, K., Takahashi, A., and Eppenberger, U., 1983, Cyclic adenosine 3’,5’-monoposphate receptor proteins in displastic and neoplastic human breast tissue cytosol and their inverse relationship with estrogen receptors, Cancer Res. 43: 2947–2954.

    PubMed  CAS  Google Scholar 

  • Holmgren, J., 1981, Actions of cholera toxin and the prevention and treatment of cholera, Nature 292: 413–417.

    Article  PubMed  CAS  Google Scholar 

  • Huang, A. L., Ostrowski, M. C., Berard, D., and Hager, G. L., 1981, Glucocorticoid regulation of the Ha-MuSV p21 gene conferred by sequences from mouse mammary tumor virus, Cell 27: 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Huang, F. L., and Cho-Chung, Y. S., 1982, Dibutyryl cyclic AMP treatment mimics ovariectomy: New genomic regulation in mammary tumor regression, Biochem. Biophys. Res. Commun. 107: 411–415.

    Google Scholar 

  • Huggins, C., Grand, L. C., Brilliantes, F. P. 1961, Mammary cancer induced by a single feeding of polynuclear hydrocarbons, and its suppression, Nature 189: 204–207.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, E. V., and DeSombre, E. R., 1972, Mechanism of action of the female sex hormones, Annu. Rev. Biochem. 41: 203–230.

    Google Scholar 

  • Jungmann, R. A., and Kranias, E. G., 1977, Minireview: Nuclear phosphoprotein kinases and the regulation of gene transcription, Int. J. Biochem. 8: 819–830.

    Google Scholar 

  • Jungmann, R. A., Lee, S. G., and DeAngelo, A. B., 1975, Translocation of Cytoplasmic protein kinase and Cyclic adenosine monophosphate-binding protein to intracellular receptor sites, Adv. Cyclic Nucleotide Res. 5: 781–306.

    Google Scholar 

  • Kapoor, C. L., and Cho-Chung, Y. S., 1983a, Affinity purification of antibodies of regulatory subunits of cAMP-dependent protein kinase using cross-linked immunoabsorbent, J. Immunol. Methods 57: 215–220.

    Google Scholar 

  • Kapoor, C. L., and Cho-Chung, Y. S., 1983b, Compartmentalization of regulatory subunits of cyclic adenosine 3’,5’-monophosphate-dependent protein kinases in MCF-7 human breast cancer cells, Cancer Res. 43: 295–302.

    PubMed  CAS  Google Scholar 

  • Kapoor, C. L., and Cho-Chung, Y. S., 1983c, Mitotic apparatus and nucleoli compartmentalization of 50,000-dalton type II regulatory subunit of cAMP-dependent protein kinase in estrogen receptor negative MDA-MB-231 human breast cancer cells, Cell Biol. Int. Rep. 7: 49–60.

    Google Scholar 

  • Kapoor, C. L., Grantham, F., and Cho-Chung, Y. S., 1983, Appearance of 50,000- and 52,000dalton cAMP receptor proteins in the nucleoli of regressing MCF-7 human breast cancer upon estrogen withdrawal, Cell Biol. Int. Rep. 7: 937–946.

    Google Scholar 

  • Kim, U., and Furth, J., 1960, Relation of mammotropes to mammary tumors. IV. Development of highly hormone dependent mammary tumors, Proc. Soc. Exp. Biol. Med. 105: 490–492.

    Google Scholar 

  • Kojima, R., Shimada, L., and Asano, H., 1973, Effects of oral administration of arginine on tumor bearing mice, Exp. Anim. 22: 237–242.

    Google Scholar 

  • Krebs, E. G., 1972, Proteind kinase, Curr. Top. Cell. Regul. 5: 99–133.

    Google Scholar 

  • Kuehl, F. A., Jr., Ham, E. A., Zanetti, M. E., Sanford, C. H., Nicol, S. E., and Goldberg, N. D., 1974, Estrogen-related increases in uterine guanosine 3’,5’-cyclic monophosphate levels, Proc. Natl. Acad. Sci. USA 71: 1866–1870.

    Google Scholar 

  • Kuo, J. F., and Greengard, P., 1969, Cyclic nucleotide-dependent protein kinase. IV. Widespread occurrence of adenosine 3’,5’-monophosphate-dependent protein kinase in various tissues and phyla of the animal kingdom, Proc. Natl. Acad. Sci. USA 64: 1349–1355.

    Google Scholar 

  • Kvinnsland, S., Ekanger, R., Doskeland, S. O., and Thorsen, T., 1983, Relationship of cyclic AMP binding capacity and estrogen receptor to hormone sensitivity in human breast cancer, Breast Cancer Res. Treat. 3: 67–72.

    Google Scholar 

  • Langan, T. A., 1968, Histone phosphorylation: Stimulation by adenosine 3’,5’-monophosphate, Science 162: 579–581.

    Article  PubMed  CAS  Google Scholar 

  • Langan, T. A., 1973, Protein kinases and protein kinase substrates, Adv. Cyclic Nucleotide Res. 3: 99–153.

    Google Scholar 

  • Levy, H. M., Montanez, G., Feaver, E. R., Murphy, E. A., and Dunn, M. S., 1954, Effect of arginine on tumor growth in rats, Cancer Res. 14: 198–200.

    PubMed  CAS  Google Scholar 

  • Matusik, R. J., and Hilf, R., 1976, Relationship of adenosine 3’,5’-cyclic monophosphate and guanosine 3’,5’-cyclic monophosphate to growth of dimethylbenz(a)anthracene-induced mammary tumors in rats, J. Natl. Cancer Inst. 56: 659–661.

    Google Scholar 

  • Milner, J. A., and Stepanovich, L. V., 1979, Inhibitory effect of dietary arginine on growth of Ehrlich ascites tumor cells in mice, J. Nutr. 109: 489–494.

    PubMed  CAS  Google Scholar 

  • Nakanishi, K., 1969, Studies on tumor growth inhibition of arginine imbalanced diet, Osaka Univ. Med. J. 21: 193–204.

    Google Scholar 

  • O’Malley, B. W., and Means, A. R., 1974, Female steroid hormones and target cell nuclei: The effects of steroid hormones on target cell nuclei are of major importance in the interaction of new cell functions, Science 183: 610–620.

    Google Scholar 

  • Pastan, I., and Perlman, R. L., 1972, Regulation of gene transcription in E. coli by cyclic AMP, Adv. Cyclic Nucleotide Res. 1: 11–16.

    Google Scholar 

  • Pastan, I., Johnson, G. S., and Anderson, W. B., 1975, Role of cyclic nucleotides in growth control, Annu. Rev. Biochem. 44: 491–522.

    Google Scholar 

  • Perkins, J. P., 1973, Adenyl cyclase, Adv. Cyclic Nucleotide Res. 3: 1–64.

    Google Scholar 

  • Prasad, K. N., 1975, Differentiation of neuroblastoma cells in culture, Biol. Rev. 50: 129–165.

    Google Scholar 

  • Puck, T. T., 1979, Studies on cell transformation, Somatic Cell Genet. 5: 973–990.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, G. A., Butcher, R. W., and Sutherland, E. W., 1971, Cyclic AMP, Academic Press, New York.

    Google Scholar 

  • Rubin, C. S., and Rosen, O. M., 1975, Protein phosphorylation, Annu. Rev. Biochem. 44: 831–887.

    Google Scholar 

  • Shafie, S., and Brooks, S. C., 1977, Effect of prolactin on growth and the estrogen receptor level of human breast cancer cells (MCF-7), Cancer Res. 37: 792–799.

    PubMed  CAS  Google Scholar 

  • Shafie, S. M., and Grantham, F. H., 1981, Role of hormones in the growth and regression of human breast cancer cells (MCF-7) transplanted to nude mice, J. Natl. Cancer Inst. 67: 51–56.

    Google Scholar 

  • Shafie, S. M., Cho-Chung, Y. S., and Gullino, P. M., 1979, Cyclic adenosine 3’,5’-monophosphate and protein kinase activity in insulin-dependent and -independent mammary tumors, Cancer Res. 39: 2501–2504.

    PubMed  CAS  Google Scholar 

  • Shanker, G., Ahrens, H., and Sharma, R. K., 1979, Novel protein kinase, AUT-PK85, isolated from adrenocortical carcinoma: Purifiction and characterization, Proc. Natl. Acad. Sci. USA 76: 66–70.

    Google Scholar 

  • Shih, T. Y., Weeks, M. O., Young, H. A., and Scolnick, E. M., 1979, Identification of a sarcoma virus coded phosphorprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus, Virology 96: 64–69.

    Article  PubMed  CAS  Google Scholar 

  • Simantov, R., and Sachs, L., 1975, Temperature sensivitity of cyclic adenosine 3’,5’-monophosphate-binding proteins and the regulation of growth and differentiation in neuroblastoma cells, J. Biol. Chem. 250: 3236–3242.

    Google Scholar 

  • Steinberg, R. A., O’Farrell, P. H., Friedrich, U., and Coffino, P., 1977, Mutations causing charge alterations in regulatory subunits of the cyclic AMP-dependent protein kinase of cultured S49 lymphoma cells, Cell 10: 381–391.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, Y., Tominago, T., Tei, N., Kitamura, M., Taga, S., Murase, J., Taguchi, T., and Miwatani, T., 1975, Inhibitory effect of L-arginine on growth of rat mammary tumors induced by 7,12dimethylbenz(a)anthracene, Cancer Res. 35: 2390–2393.

    PubMed  CAS  Google Scholar 

  • Walsh, D. A., Perkins, J. P., and Krebs, E. G., 1968, An adenosine 3’,5’-monophosphate-dependent protein kinase from rabbit skeletal muscle, J. Biol. Chem. 243: 3763–3765.

    Google Scholar 

  • Weber, W., and Hilz, H., 1979, Stoichiometry of cAMP binding and limited proteolysis of protein kinase regulatory subunits RI and RII, Biochem. Biophys. Res. Commun. 90: 1073–1081.

    Google Scholar 

  • Weber, W., Schwoch, G., Schroder, H., and Hilz, H., 1981, Analysis of cAMP-dependent protein kinases by immunotitration: Multiple forms—multiple functions, in: Cold Spring Harbor Conference on Cell Proliferation, Volume 8, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., pp. 125–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Cho-Chung, Y.S., Huang, F.L., Kapoor, C.L. (1985). Role of Cyclic AMP in Modifying the Growth of Mammary Carcinomas. In: Mihich, E. (eds) Biological Responses in Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1236-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1236-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1238-3

  • Online ISBN: 978-1-4684-1236-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics