Skip to main content

Computer-Control of Fermentation Processes

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 87))

Abstract

Already since the 18th century one can witness a steady trend towards the use of machines to replace the muscle power of animals and man. The rise of the digital computer in the fifties has speeded up this process. In the beginning, the computer was used for lower level mental processes such as information retrieval and tedious calculations. Nowadays the digital machine can replace higher level mental processes such as the ability to recognize patterns, to identify systems, to make decisions and so on.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alford, J.S., 1978, Modeling cell concentration in complex media, Biotechnology and bioengineering, vol. XX, 1873–1881.

    Article  Google Scholar 

  • Bastin, G., Dochain, D., Haest, M., Installé, M. and Opdenacker, P., 1982a, Modeling and adaptive control of a continuous anaerobic fermentation process, IFAC-workshop on Modelling and Control of biotechnical processes, Helsinki, Finland, august 17–19.

    Google Scholar 

  • Bastin, G., Dochain, D., Haest, M., Installé, M. and Opdenacker, P., 1982b, Identification and adaptive control of a biomethanization process, IFIP Working Conference on modelling and data analysis in biotechnology and medical engineering, University of Ghent, August 31–September 2.

    Google Scholar 

  • Battley, E.H., 1960, Growth-Reaction Equations for Saccharomyces cerevisiae, Physiologia Plantarum, vol. 13, 192–203.

    Article  CAS  Google Scholar 

  • Bayer, K. and Fuehrer, F., 1982, Computer coupled calorimetry in fermentation, Process biochemistry, July/august, 42-45.

    Google Scholar 

  • Bergveld, D. and DeRooij, N., 1979, From conventional membrane electrodes to ionsensitive field-effect transistors, Med. & Biol. Eng. & Comput., 17, 647–654.

    Article  CAS  Google Scholar 

  • Bernard, A., Cordonnier, M. and Lebeault, J.M., 1983, A DDC pilot plant system for fermentation control, Process Biochemistry, may/June.

    Google Scholar 

  • Beyeler, W., Einsele, A. and Fiechter, A., 1981, Fluorometric studies in bioreactors: method and applications, Second European Congress on Biotechnology, 5–10 april, Eastbourne.

    Google Scholar 

  • Blachère, H. and Jamart, G., 1969, A flow cell photometer for bacterial growth monitoring, Biotechnology and bioengineering, vol. XI, 1005–1010.

    Article  Google Scholar 

  • Constantinides, A., Spencer, J. and Gaden, E., 1970, Biotechnology and Bioengineering, vol. 12.

    Google Scholar 

  • Cooney, C.L., Wang, D.I.C. and Mateles, R.I., 1968, Measurement of heat evolution and correlation with oxygen consumption during microbial growth, Biotechnology and Bioengineering, vol. XI, 269–281.

    Google Scholar 

  • Cooney, C.L., Wang, H.Y. and Wang, D.I.C, 1977, Computer-aided fermentation monitoring and diagnostics, US/USSR Sem. on Measurements in Fermentation Processes, Philadelphia, U.S.A., august 12–14.

    Google Scholar 

  • Cooney, C.L., Wang, H.Y. and Wang, D.I.C., 1977, Computer-aided material balancing for prediction of fermentation parameters, Biotechnology and bioengineering, vol. XIX, 55–67.

    Article  Google Scholar 

  • Croset, M., 1982, Chemically sensitive ionic devices, Summercourse on solid-state sensors (W. Sansen and J. van der Spiegel), K.U.L., Belgium.

    Google Scholar 

  • Dahod, S.K., 1982, Redox potential as a better substitute for dissolved oxygen in fermentation process control, Biotechnology and bioengineering, vol. XXIV, 2123–2125.

    Article  Google Scholar 

  • Danielsson, B., Mandenius, C.F., Winquist, F., Mattiasson, B. and Mosbach, K., 1981, Enzyme thermistor applications in biotechnology, 2nd European Congress of Biotechn., p.119, 5–10 April.

    Google Scholar 

  • Danielsson, B., Winquist, F., Mosbach, K. and Lundström, I., 1983, Enzyme transistors, Biotech 83, On-line Publications Ltd,, 679-688.

    Google Scholar 

  • D’Ans, G., Gottlieb, D. and Kokotovic, P., 1972, Optimal Control of Bacterial Growth, Automatica 8, Pergamon Press.

    Google Scholar 

  • DeBuyser, D.R. and De Wael, L.A., 1981, On-line software for process monitoring, Internal report, University of Ghent, Belgium.

    Google Scholar 

  • De Buyser, D.R. and Vansteenkiste, G.C., 1983, Building an on-line sensor for biomass through modelling, First European Simulation Congress ESC 83 (Ed. W. Ameling), 390-396.

    Google Scholar 

  • DeKok, H.E. and Roels, J.A., 1980, Method for the statistical treatment of elemental and energy balances with application to steady-state continuous culture growth of Saccharomyces cerevisiae CBS 426 in the respiratory region, Biotechnology and bioengineering, vol. XXII, 1097–1104.

    Article  Google Scholar 

  • Enfors, S.O., 1981a, An enzyme electrode for control of glucose concentration in fermentation broths, Second European Congress of Biotechnology, 141, 5–10 april, Eastbourne.

    Google Scholar 

  • Enfors, S.O., 1981b, Oxygen-stabilized enzyme electrode for D-glucose analysis in fermentation broths, Enzyme Microb. Technol., vol. 3, 29–32.

    Article  CAS  Google Scholar 

  • Enfors, S.O. and Dostalek, M., 1975, Monitoring of dosing of liquids in laboratory scale fermentation, Process Biochemistry, july/august.

    Google Scholar 

  • Erickson, L.E., 1980, Analysis of microbial growth and product formation with nitrate as nitrogen source, Biotechnology and bioengineering, vol. XXII, 1929–1944.

    Article  Google Scholar 

  • Erickson, L.E., Minkevich, I.G. and Eroshin, V.K., 1978a, Application of man and energy balance regularities in fermentation, Biotechnology and bioengineering, vol. XX, 1595–1621.

    Article  Google Scholar 

  • Erickson, L.E. and Viesturs, U.E., 1978b, Application of man and energy balance regularities to product formation, Biotechnology and bioengineering, vol. XX, 1623–1638.

    Article  Google Scholar 

  • Erickson, L.E., Minkevich, I.G. and Eroshin, V.K., 1979, Utilization of mass-energy balance regularities in the analysis of continuous culture data, Biotechnology and bioengineering, vol. XXI, 575–591.

    Article  Google Scholar 

  • Ericksson, R.K., 1981, Observations of microbial substrate utilization via the heat produced, Second European Congress of biotechnology, 138, 5–10 april, Eastbourne.

    Google Scholar 

  • Esener, A.A., Veerman, T., Roels, J.A. and Kossen, N.W.F., 1982, Modeling of bacterial growth; formulation and evaluation of a structured model, Biotechnology and bioengineering, vol. XXIV, 1749–1764.

    Article  Google Scholar 

  • Fazel-Madjlessi, J. and Bailey, J.E., 1979, Analysis of fermentation processes using flow microfluorometry: single-parameter observations of batch bacterial growth, Biotechnology and bioengineering, vol. XXI, 1995–2010.

    Article  Google Scholar 

  • Ferrer, A. and Erickson, L.E., 1979, Evaluation of data consistency and estimation of yield parameters in hydrocarbon fermentations, Biotechnology and bioengineering, vol. XXI, 2203–2233.

    Article  Google Scholar 

  • Fish, N.M., Vardar, F. and Lilly, M.D., 1981, Effect of dissolved gas concentrations on microbial product formation, Second European Congress of biotechn., 77, 5–10 april, Eastbourne.

    Google Scholar 

  • Foulard, C. and Bourdand, D., 1975, Optimisation de procédes de fermentation discontinus, in “Automatisation des processus de fermentation”, AFCET.

    Google Scholar 

  • Fraser, G., 1983, Computer control of fermentation processes, Biotech 83, Online Publications Ltd., 283-293.

    Google Scholar 

  • Goma, G., 1975, Contribution à l’étude des fermentations sur hydrocarbones, Transfert de matière — lois de croissance, Thèse présentée à l’université Paul Sabatier de Toulouse pour obtenir le grade de docteur d’état, 1-231.

    Google Scholar 

  • Goma, G. and Ribot, D., 1975, Procédé de mesure des chaleurs de réaction applicable à la détermination des paramètres de la croissance microbienne et des productivités des réacteurs biologiques, Brevet (France) 75-14927.

    Google Scholar 

  • Guilbault, G.G., 1980, Enzyme electrode probes, Enzyme Microb. Technol., vol. 2, 258–264.

    Article  CAS  Google Scholar 

  • Hampel, W., 1980, Bildung von α-Mannosidase durch Arthrobacter Monatshefte für Chemie, 111, 443-457.

    Google Scholar 

  • Hampel, W., Wöhrer, W., Bach, H.P. and Röhr, M., 1979, Computer unterstützte analyse und Steuerung von fermentationen, Mitteilungen der Versuchsstation für das gärungsgewerbe in Wien, n°1/2.

    Google Scholar 

  • Hampel, W., John, E. and Roehr, M., 1981, Minicomputer application in fermentation research: analysis and control of enzyme formation in Arthrobacter sp., Second European Congress of Biotechnology, 5–10 april, Eastbourne, England, Abstract of communications, p.147 and personal letter.

    Google Scholar 

  • Heijnen, J.J., 1981, Application of the macroscopic electric charge balance in fermentation modeling, Second European Congress of Biotechnology, 5–10 april, Eastbourne, p. 92.

    Google Scholar 

  • Heinzle, E., 1981, Continuous on-line measurement of process variables in biological reactors, XXII cycle de perfectionnement en genie chimique, thème: “le genie biochimique”, 25–27 nov. Brüssel, Belgium.

    Google Scholar 

  • Heinzle, E., Dunn, I.J. and Bourne, J.R., 1981, Continuous measurement of gases, dissolved gases and volatiles during fermentations using mass spectrometry, Second European Congress of biotechnology, p.24, 5–10 april, Eastbourne.

    Google Scholar 

  • Higham, E.H., 1983, Practical issues for microprocessors in process measurements, Symposium ‘Impakt van de mikro-elektronica op de primaire meetelementen’, 6 Oktober 1983.

    Google Scholar 

  • Hill, F.F. and Thommel, J., 1982, Continuous measurement of the ammonium concentration during the propagation of baker’s yeast, Process Biochemistry, September/October, 16–18.

    Google Scholar 

  • Holmberg, A., 1981, A systems engineering approach to biotechnical processes — experiences of modelling, estimation and control methods, Acta Polytechnica Scandinavia, mathematics and computer science series n°3,3, 1-46.

    Google Scholar 

  • Holmberg, A., Sievänen, R. and Carlberg, G., 1980, Fermentation of Bacillus thuringiensis for exotoxin production: process analysis study, Biotechnology and bioengineering, vol. XXII, 1707–1724.

    Article  Google Scholar 

  • Humphrey, A.E., 1977, The use of computers in fermentation systems, Process Biochemistry, march, 19–25.

    Google Scholar 

  • Jarai, M., 1972, Oxygen transfer in the fermentations of primary and secondary metabolites, Proc. IV IFS: Ferment. Technol. Today, 97-103.

    Google Scholar 

  • Karube, I. and Suzuki, S., 1983, Biosensor for fermentation and environmental control, Biotech 83, Online Publications, 625-632.

    Google Scholar 

  • Kell, D.B., 1980, The role of ion-selective electrodes in improving fermentation yields, Process Biochemistry, January, 18–23.

    Google Scholar 

  • Kempe, E. and Schallenberger, W., 1983, Measuring and control of fermentation processes: part 1, Process Biochemistry, december, 7–12.

    Google Scholar 

  • Kernevez, J.P., Konate, L. and Romette, J.L., 1983, Determination of substrate concentrations by a computerized enzyme electrode, Biotechnology and bioengineering, vol. XXV, 845–855.

    Article  Google Scholar 

  • Kjaergaard, L. and Joergensen, B.B., 1979, Redox potential as a state variable in fermentation systems, Biotechnology and bioengineering symposium, n°9, 85-94.

    Google Scholar 

  • Le Duy, A. and Samson, R., 1982, Testing of an ammonia ion selective electrode for ammonia nitrogen measurement in the methanogenic sludge, Biotechnology letters, vol. 4, n°5, 303–306.

    Article  Google Scholar 

  • Lee, C. and Lim, H., 1980, New device for continuously monitoring the optical density of concentrated microbial cultures, Biotechnology and bioengineering, vol. XXII, 639–642.

    Article  Google Scholar 

  • Leisola, M., Ojamo, H. and Kauppinen, V., 1979a, Automatic monitoring of protease activity during fermentation, Enzyme Microb. Technol., vol. 1, 51–52.

    Article  CAS  Google Scholar 

  • Leisola, M., Virkkunen, J., Karvonen, E. and Meskanen, A., 1979b, Automatic cellulase assay in computer coupled pilot fermentation, Enzyme Microb. Technol., vol. 1, 117–121.

    Article  CAS  Google Scholar 

  • Leisola, M., Ojamo, H., Kauppinen, V., Linko, M. and Virkkunen, J., 1980, Measurement of α-amylase and gluco-amylase activities produced during fermentation, Enzyme Microb. Technol., vol. 2, 121–125.

    Article  CAS  Google Scholar 

  • Liu, C.C. and Chen, A.K., 1982, Potentiometric quantitation of biological substrates using gel-immobilized oxidoreductases, Process Biochemistry, september/october, 12–14.

    Google Scholar 

  • Lock, M.A and Ford, T.E., 1983, Inexpensive flow microcalorimeter for measuring heat production of attached and sedimentary aquatic micro-organisms, Applied and environmental microbiology, vol. 46, n°2, 463–467.

    PubMed  CAS  Google Scholar 

  • Lowe, C., Goldfinch, M., Lias, R., 1983, Some novel biomedical biosensors, Biotech, Online Publications Ltd., 633-641.

    Google Scholar 

  • Luyben, K. Ch.A.M., Tramper, J. and Olieman, J.J., 1981, Monitoring different growth phases in Gluconobacter oxydans fermentation, Sec. European Congress of Biotech., 5–10 april, Eastbourne, 139.

    Google Scholar 

  • Madron, F., 1979, Material-balance calculations of fermentation processes, Biotechnology and bioengineering, vol. XXI, 1487–1490.

    Article  Google Scholar 

  • Madron, F. and Vanecek, V., 1977, Statistical adjustment of material balance of a chemical reactor, Collection Czechoslov. Chem. Commun., 42.

    Google Scholar 

  • Mandenius, C.F., Danielsson, B. and Mattiasson, B., 1981, Control of the substrate concentration in an ethanol fermentation by an enzyme thermistor, Second European Congress of Biotechnology, p. 143, 5–10 april, Eastbourne.

    Google Scholar 

  • Marison, I. and von Stockar, U., 1983, The use of a new heat flux calorimeter for the measurement of heat evolved during microbial growth, Biotech 83, Online Publications, 947-959.

    Google Scholar 

  • Meiners, M. and Rapmundt, W., 1981, Adaptive and/or optimal control in fermentation processes?, Second European Congress of Biotechnology, p.91, 5–10 april, Eastbourne.

    Google Scholar 

  • Meiners, M. and Rapmundt, W., 1983, Some practical aspects of computer applications in a fermentor hall, Biotechnology and bioengineering, vol. XXV, 809–844.

    Article  Google Scholar 

  • Minkevich, I.G., 1983, Mass-energy balance for microbial product synthesis — biochemical and cultural aspects, Biotechnology and bioengineering, vol. XXV, 1267–1293.

    Article  Google Scholar 

  • Mosbach, K., Mandenius, C.F. and Danielsson, B., 1983, New biosensor devices, Biotech 83, Online publications Ltd., 665-678.

    Google Scholar 

  • Mou, D.G. and Cooney, C.L., 1976, Application of dynamic calorimetry for monitoring fermentation processes, Biotechnology and bioengineering, vol. XVIII, 1371–1392.

    Article  Google Scholar 

  • Murthy, A.K.S., 1973, A least-squares solution to mass balance around a chemical reactor, Ind. Eng. Chem. Process Des. Develop., vol. 12, n°3.

    Google Scholar 

  • Murthy, A.K.S., 1974, Material balance around a chemical reactor, II, Ind. Eng. Chem. Process Des. Develop., vol. 13, n°4.

    Google Scholar 

  • Nagai, S., 1979, Mass and energy balances for microbial growth kinetics, Advances in biochemical engineering, n°11, 49-83.

    Google Scholar 

  • Nyeste, L., Szigeti, L., Veres, A., Pungor, E., Kurucz, I. and Hollo, J., 1981, Automated Fermentation equipment, II. Computerfementor system. Biotechnology and bioengineering, vol. XXIII, 405–417.

    Article  Google Scholar 

  • Nyiri, L., 1972, A philosophy of data acquisition analysis and computer control of fermentation processes, Developments in Industrial Microbiology, 13, 136.

    CAS  Google Scholar 

  • Nyiri, L.K., 1973, Application of computers in biochemical engineering, In ‘Advances in Biochemical Engineering’, 2, 49–95.

    Article  Google Scholar 

  • Nyiri, L.K., Toth, G.M. and Charles, M., 1975, On-line measurement of gas-exchange conditions in fermentation processes. Biotechnology and bioengineering, vol. XVII, pp. 1663–1678.

    Article  Google Scholar 

  • Ohashi, M., Watanabe, T., Ishikawa, T., Watanabe, Y., Miwa, K., Shoda, M., Ishikawa, Y., Ando, T., Shibata, T., Kitsunai, T., Kamiyama, N. and Oikawa, Y., 1979, Sensors and instrumentation Steam-Sterilizable Dissolved oxygen sensor and cell mass sensor for on-line fermentation system control, Proc. Second Internat. Conf. on Comp. Appl. in Ferm. Techn., Biotech. and bioeng. Symp. 9, 103-116.

    Google Scholar 

  • Pirt, S.J., 1975, “Principles of microbe and cell cultivation”, Blackwell scientific publications, Oxford.

    Google Scholar 

  • Pontryagin, L.S., Boltyanskii, V.G. Gamkrelidze, R.V. and Mishchenko E.F. 1962, “The mathematical Theory of Optimal Processes”, Interscience Publishers Inc., New York.

    Google Scholar 

  • Pungor, E., Perley, C.R., Cooney, C.L. and Weaver, J.C., 1980, Continuous monitoring of fermentation outlet gas using a computer coupled MS, Biotechnology letters, vol. 2, n°9, 409–414.

    Article  CAS  Google Scholar 

  • Ramirez, A., Durand, A. and Blachère, H.T., 1981, Optimal baker’s yeast production in extended fed—batch culture by using a computer coupled pilot fermentator, Sec. Euprean Congress of Biotech., p. 26, 5–10 april, Eastbourne.

    Google Scholar 

  • Roels, J.A., 1983, “Energetics and kinetics in biotechnology”, Elsevier Biomedical Press, 1-330.

    Google Scholar 

  • Roels, J.A. and Kossen, N.W.F., 1978, On the modelling of microbial metabolism, Progress in industrial microbiol., 14, 95–203.

    CAS  Google Scholar 

  • Rolf, M.J., Hennigan, P.J., Mohler, R.D., Weigand, W.A. and Lim, H.C., 1982, Development of a direct digital — controlled fermentor using a microminicomputer hierarchical system, Biotechnology and bioengineering, vol. XXIV, 1191–1210.

    Article  Google Scholar 

  • Rolf, M.J. and Lim, H.C., 1982, Computer control of fermentation processes, Enzyme and Microbial Technology, vol. 4, 370–380.

    Article  CAS  Google Scholar 

  • Sansen, W., 1983, Sensors in silicon, Journal A, vol. 24, n°3, 116–122.

    Google Scholar 

  • Sobotka, M., Votruba, J., Havlik, I. and Minkevich, I.G., 1983, The mass-energy balance of anaerobic methane production, Folia microbiol., 28, 195–204.

    Article  CAS  Google Scholar 

  • Solomon, B.O. and Erickson, L.E., 1981, Biomass yields and maintenance requirements for growth on carbohydrates, Process biochemistry, February/March, 44-49.

    Google Scholar 

  • Solomon, B.O., Erickson, L.E., Hess, J.E. and Yang, S.S., 1982, Maximum likelihood estimation of growth yields, Biotechnology and bioengineering, vol. XXIV, 633–649.

    Article  Google Scholar 

  • Solsky, R.L., 1983, Ion selective electrodes in biomedical analysis, CRC Crit. Rev. Anal. Chem., 14, 1–52.

    Article  Google Scholar 

  • Spriet, J.A., 1980, Struktuur-identifikatie in het licht van patroonherkenning, Ph-D-thesis, University of Ghent, Belgium.

    Google Scholar 

  • Spriet, J.A., 1982, Modelling the growth of micro-organisms: a critical appraisal, in: “Environmental Systems Analysis and Management” (S. Rinaldi, ed.), North Holland Publ. Co., Amsterdam, The Netherlands.

    Google Scholar 

  • Spriet, J.A., Botterman, J., DeBuyser, D.R., DeVisscher, P.L. and Vandamme, E.J., 1982, A computer-aided noninterfering on-line technique for monitoring oxygen-transfer characteristics during fermentation processes, Biotechnology and bioengineering, vol. XXIV, 1605–1621.

    Article  Google Scholar 

  • Spriet, J.A. and Vansteenkiste, G.C., 1978, A new approach towards measurements and identification for control of fermentation systems, in: “Simulation of Control Systems”, (I. Troch, ed.), North-Holland Publ. Co., Amsterdam, 245–248.

    Google Scholar 

  • Spriet, J.A. and Vansteenkiste, G.C., 1982, “Computer-aided modeling and simulation”, International Lecture Notes in Computer Science, Academic Press, London.

    Google Scholar 

  • Sumitani, T., Shimizu, N. and Odawara, Y., 1983, Automatic control of fermentor using microcomputer, Biotech 83, Online publications Ltd., 295-306.

    Google Scholar 

  • Swartz, J.R. and Cooney, C.L., 1979, Indirect fermentation measurements as a basis for control, Biotechnology and bioengineering symp., n°9, 95-101.

    Google Scholar 

  • Tran, N.D., Romette, J.L. and Thomas, D., 1983, An enzyme electrode for specific determination of L-lysine: a real-time control sensor, Biotechnology and bioengineering, vol. XXV, 329–340.

    Article  Google Scholar 

  • Turner, A.P.F., 1983, Applications of direct electron transfer. Bio-electrochemistry in sensors and fuel cells, Biotech 83, Online Publications, 643-654.

    Google Scholar 

  • Vandamme, E.J., De Buyser, D.R., De Visscher, P.L., Spriet, J.A. and Demain, A.L., 1981, Dynamics of gramicidin S and GS-synthetases formation in pH-and aeration-controlled Bacillus brevis ATCC 9999 cultures, Second European Congress on Biotechnology, 5–10 april, Eastbourne.

    Google Scholar 

  • Vandamme, E.J., Leyman, D., De Buyser, D.R., De Visscher, P.L., Spriet, J.A., Vansteenkiste, G.C., Nimi, O., Poirier, A. and Demain, A.L., 1982, Environmental influences on the dynamics of the gramicidin S fermentation, in: “Peptide Antibiotics — Biosynthesis and Functions”, (H. Kleinkauf and H. v.Döhren, eds.), Walter de Gruyter & Co., 117-135.

    Google Scholar 

  • Van der Grinten, P.M.E.M. and Lenoir, J.M.H., 1973, Statistische procesbeheersing, Prisma-Technica, 50 (Uitgeverij Het Spectrum B.V.), 336-343.

    Google Scholar 

  • Verduyn, C., Van Dijken, J.P. and Scheffers, W.A., 1983, A simple, sensitive and accurate alcohol electrode, Biotechnology and bioengineering, vol. XXV, 1049–1055.

    Article  Google Scholar 

  • Vorlop, K.D., Becke, J.W. and Klein, J., 1983, On-line measurement of ethanol with a gas-sensor-dip-electrode, Biotechnology letters, vol. 5, n°8, 509–514.

    Article  CAS  Google Scholar 

  • Wang, H.Y., Cooney, C.L. and Wang, D.I.C., 1977, Computer-aided baker’s yeast fermentations, Biotechnology and bioengineering, vol. XIX, 69–86.

    Article  Google Scholar 

  • Wang, N.S. and Stephanopoulos, G., 1983, Application of macroscopic balances to the identification of gross measurement errors, Biotechnology and bioengineering, vol. XXV, 2177–2208.

    Article  Google Scholar 

  • Wei, C.J., Tanner, R.D., Malaney, G.W. and Charles, M., 1983, An on-line indirect measurement technique for monitoring yeast cell biomass in semi-solid gels, Process biochemistry, march/ april, 2–5.

    Google Scholar 

  • Whaite, P., Aborhey, S., Hong, E. and Rogers, P.L., 1978, Microprocessor control of respiratory quotient, Biotechnology and bioengineering, vol. XX, 1459–1463.

    Article  Google Scholar 

  • Williams, M.H. and Brain, K.R., 1976, A novel method of growth estimation for suspension cultures, Process biochemistry, may, 41-43.

    Google Scholar 

  • Wingard, L.B,, 1983, Prospects for electrochemical devices and processes based on biotechnology, Biotech 83, Online publications Ltd., 613-624.

    Google Scholar 

  • Winquist, F., Danielsson, B., Lundström, I. and Mosbach, K., 1981, Biochemical applications of H2 and NH3 sensitive Pd-MOS structures, Second Europ. Congr. on Biotech., p. 120, 5–10 april, Eastbourne.

    Google Scholar 

  • Zabriskie, D.W., 1979, Use of culture fluorescence for monitoring of fermentation systems, Biotechnology and bioengineering symp. n°9, 117-123.

    Google Scholar 

  • Zabriskie, D.W., Armiger, W.B. and Humphrey, A.E., 1976, Applications of computers to the indirect measurement of biomass concentration and growth rate by component balancing, GBF-Monograph Series, n°3.

    Google Scholar 

  • Zabriskie, D.W. and Humphrey, A.E., 1978, Real-time estimation of aerobic batch fermentation biomass concentration by component balancing, AICHE Journal, vol. 24, n°1, 138–146.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

De Buyser, D.R., Spriet, J.A., Vansteenkiste, G.C. (1985). Computer-Control of Fermentation Processes. In: Alaeddinoğlu, N.G., Demain, A.L., Lancini, G. (eds) Industrial Aspects of Biochemistry and Genetics. NATO ASI Series, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1227-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1227-7_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1229-1

  • Online ISBN: 978-1-4684-1227-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics