Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 87))

Abstract

The immobilization of intact microbial cells has recently attracted attention because of their potential for industrial applications. This interest stems mainly from the fact that immobilized whole cells favorably combine the advantages inherent in the use of immobilized enzymes with those of microbial fermentations. For instance enzyme extraction and purification are eliminated, higher yields of enzymes are obtained, retention of structural and confirmational integrity is achieved, greater potential is offered, for multistep processes, and enzyme stability is increased.6, 7, 8, 12, 25, 26

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chibata, I., Tosa, T., Sato, T. Immobilized Aspartase containing microbial cells: Preparation and Enzymatic Properties. App. Microbiol. 27(5): 878–885 (1974).

    CAS  Google Scholar 

  2. Chibata, I., Tosa, T., Sato, T. Production of L-aspartic acid by microbial cells entrapped in polyacrylamide gels. Methods in Enzymology, Vol. 44, Academic Press Inc., New York (1976).

    Google Scholar 

  3. Chibata, I. Immobilized microbial cells with polyacrylamide gel and carrageenan and their industrial applications, Chapter 13 in immobilized microbial cells, Venkatsubramanian, K. Ed., ACS Symposium Series 106, ACS, Washington, D.C (1979).

    Google Scholar 

  4. D’Souza, S.F., Nadkarni, G.B. Continious inversion of sucrose by gel entrapped yeast cells. Enzyme Microb. Technol. 2: 217–222 (1980).

    Article  Google Scholar 

  5. D’Souza, S.F., Nadkarni, G.B. Continious conversion of sucrose to fructose and gluconic acid by immobilized yeast cell multienzyme complex. Biotechnol. Bioeng. 22: 2179–2189 (1980)

    Article  Google Scholar 

  6. Durand, G., Navarro, J.M. Immobilized microbial cells. Process Biochem. 13(9): 14–23 (1978).

    CAS  Google Scholar 

  7. Evrimler, M., Sonaer, H., Çağlar, A. Poliakrilamid Jelinde tutuklanmiş Acetobacter suboxydans. Ulusal Biyomiihendislik Kongre Tebligleri, Lider Matbaacılık, Ankara (1981).

    Google Scholar 

  8. Fukui, S., Tanaka, A. Immobilized microbial cells. Ann. Rev. Microbiol. 36: 145–172 (1982).

    Article  CAS  Google Scholar 

  9. Hasırcı, V.N. Synthesis and characterization of PVNO and PVNO-PVP hydrogels. Biomaterials. 2: 8–12 (1981).

    Google Scholar 

  10. Isaeve, V.S., Kolpakchi, A.P. Fixation of brewer’s yeast to polymer materials. Prikl. Biokhim Mikrobiol. 12(6): 866–870 (1976).

    Google Scholar 

  11. Kawashima, K., Umeda, K. Immobilization of enzymes by radiopolymerization of acrylamide. Biotechnol. Bioeng. 16:609–621 (1974).

    Article  PubMed  CAS  Google Scholar 

  12. Kennedy, J.F., Barker, S.A., Humphreys, J.D. Microbial cells living immobilized on metal hydroxides. Nature. 261: 242–244 (1976).

    Article  PubMed  CAS  Google Scholar 

  13. Kimura, A. Research Institute for Food Science, Kyoto Univ., Uji, Kyoto 611, Japan. Personal Communication (1983).

    Google Scholar 

  14. Navarro, J.M. Fermentation en continue a l’aide de microorganismes fixès. Thesis Doct. Ing. Univ. Toulouse (1975).

    Google Scholar 

  15. Onyezili, F.N., Onitiri, A.C. Immobilization of invertase on modified nylon tubes. Anal. Biochem 113: 203–206 (1981)

    Article  PubMed  CAS  Google Scholar 

  16. Rembaum, S.P., Yen, S.P.S., Ingram, M., Newton, J.F., Hu, C.L., Frasher, G.W., Barbour, B.H. Platelet adhesion to heparin-bonded and heparin-free surfaces. Biomat., Med. Dev., Artificial Organs 1(1): 99–119 (1973)

    CAS  Google Scholar 

  17. Samejima, H., Kimura, K., Ado, Y., Suzuki, Y., Tadokoro, T. Regeneration of ATP by immobilized microbial cells and its utilization for synthesis of nucleotides. Enzyme Eng. 4: 237–244 (1978).

    Article  CAS  Google Scholar 

  18. Sato, T., Nishida, Y., Tasa, T., Chibata, I. Immobilization of Escherichia coli cells containing aspartase activity with K-carrageenan. Biochem. Biophys. Acta. 570: 179–186 (1979).

    Article  PubMed  CAS  Google Scholar 

  19. Sidney, J.G. Physical Techniques: Entrapment in immobilized enzyme preparation and engineering techniques, Noyes Data Corp. New Jersey (1974).

    Google Scholar 

  20. Sidney, C.P., Kaplan, N.O. Covalent coupling in Methods in Enzymology (Section II.A), Vol.44, Mosbach, K. Ed., Academic Press Inc., New York (1976).

    Google Scholar 

  21. Sidney, C.P., Kaplan, N.O. Adsorption in Methods in Enzymology (section II, B), Vol.44, Mosbach, K. Ed., Academic Press Inc., New York (1976).

    Google Scholar 

  22. Sidney, C.P., Kaplan, N.O. Entrapment and related techniques in Methods in Enzymology (section II.C), Vol. 44, Mosbach, K. Ed., Academic Press, Inc., New York (1976).

    Google Scholar 

  23. Smiley, K.L., Strandberg, G.W. Immobilized enzymes, Weast, R.C. Ed., CRC Press, Ohio, 13–38 (1973).

    Google Scholar 

  24. Toda, K., Shoda, M. Sucrose inversion by immobilized yeast cells in a complete mixing reactor, Biotechnol. Bioeng. 17: 481–497 (1975).

    Article  CAS  Google Scholar 

  25. Vandamme, E.J. Immobilized microbial cells as catalysts, Chem. and Ind. 24: 1070–1072 (1976).

    Google Scholar 

  26. Vieth, W.R., Venkatsubramanian, K. Immobilized microbial cells in complex biocatalysis, Chapter I in Immobilized Microbial Cells, Venkatsubramanian, K. Ed., ACS Symposium Series 106, ACS, Washington, D.C. (1979).

    Google Scholar 

  27. Wayne, P.H., Jr. Introduction to Immobilized enzymes. Chapter I in Immobilized Enzymes for Food Processing, Wayne, P.H., Jr. Ed., CRS Press, Inc. Florida (1980).

    Google Scholar 

  28. Wharton, D.C and McCarty, R.E. Experiments in Biochemistry. p. 313, The Macmillan Company, New York (1972).

    Google Scholar 

  29. Zaborsky, O. Covalent attachment to water-insoluble functionalized polymers. Chapter 2 in Immobilized Enzymes, Weast, R.C. Ed., CRS Press, Ohio (1973).

    Google Scholar 

  30. Zaborsky, O. Properties of covalently bonded water-insoluble enzyme-polymer conjugates. Chapter 2 in Immobilized Enzymes. Weast, R.C. Ed., CRC Press, Ohio (1973)

    Google Scholar 

  31. Zaborsky, O. Adsorption. Chapter 5 in Immobilized Enzymes, Weast, R.C. Ed., CRC Press, Ohio (1973).

    Google Scholar 

  32. Zaborsky, O., Entrapment within cross-linked polymers. Chapter 6 in Immobilized Enzymes, Weast, R.C. Ed., CRC Press, Ohio (1973).

    Google Scholar 

  33. Zaborsky, O. Microencapsulation. Chapter 7 in Immobilized Enzymes, Weast, R.C. Ed., CRC Press, Ohio (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Aykut, G., Hasirci, V.N., Alaeddinoğlu, N.G. (1985). Invertase Activity in Entrapped Yeast Cells. In: Alaeddinoğlu, N.G., Demain, A.L., Lancini, G. (eds) Industrial Aspects of Biochemistry and Genetics. NATO ASI Series, vol 87. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1227-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1227-7_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1229-1

  • Online ISBN: 978-1-4684-1227-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics