Skip to main content

Hypoxia

  • Chapter

Abstract

Hypoxia, decreased oxygen availability, may serve as a model to help elucidate the pathophysiological basis of the metabolic encephalopathies. These disorders, in which brain metabolism is altered secondarily to systemic changes, include hyperammonemia, hypoglycemia, nutritional deficiencies such as thiamine or niacin, some inborn errors of metabolism, and heavy metal intoxication (Plum, 1975). The metabolic encephalopathies share similar clinical symptoms: decreased mentation and a loss of attention, alertness, orientation, cognition, memory, and perception, which eventually progress to stupor, coma, and finally death (Plum and Posner, 1980). The similar clinical presentation, despite diverse etiologies, suggests that a common molecular mechanism may underlie the altered brain function in all of them. Furthermore, an understanding of how low oxygen alters brain metabolism may help unravel the complex changes that accompany ischemia. During ischemia, tissue perfusion is also comprised, which reduces the substrate supply and allows accumulation of possibly toxic metabolic products, as well as causing hypoxia or anoxia (complete lack of oxygen). Whether ischemic-induced tissue damage is just an exaggeration of hypoxia’s effects or if some unknown variable converts hypoxic changes to ischemic deficits is unknown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, H. F., Burhardt, W. L., Ivy, A. L., and Atkinson, A. J., 1950, Effect of various drugs on psychomotor performance at ground level in simulated altitudes at 18,000 ft in a low pressure chamber, J. Av. Med. 231: 221–236.

    Google Scholar 

  • Aisenberg, T., 1977, Hypoxemia and auditory reaction time in congenital heart disease, Percept. Mot. Skills 45: 595–600.

    CAS  Google Scholar 

  • Alberghina, M., and Guiffrida, A. M., 1981, Effect of hypoxia on the incorporation of [2–3H]glycerol and [1–14C]palmitate into lipids of various brain regions, J. Neurosci. Res. 6: 403–419.

    PubMed  CAS  Google Scholar 

  • Astrup, P., Engel, K., Sezeringhaus, W., and Munson, E., 1965, Influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood, Scand. J. Lab. Clin. Invest. 17: 515–523.

    CAS  Google Scholar 

  • Bachelard, H. S., Lewis, L. D., Ponten, U., and Siesjo, B. K., 1974, Mechanisms activating glycolysis in the brain in arterial hypoxia, J. Neurochem. 22: 395–401.

    PubMed  CAS  Google Scholar 

  • Baumgarten, G., Creutzfeldt, O., and Jung, R., 1961, Microphysiology of cortical neurons in acute anoxia and retinal ischemia in: Cerebral Anoxia and the Electroencephalogram (H. Gastaut and T. S. Meyer, eds.), Charles C Thomas, Springfield, Illinois, pp. 5–34.

    Google Scholar 

  • Bazan, N. G., 1970, Effect of ischemia and electroconvulsive shock on the free fatty acid pool in brain, Biochem. Biophys. Acta 7: 403–413.

    Google Scholar 

  • Bazan, N. G., 1976, Free arachidonate and other lipids in the nervous system during early ischemia and after electroshock, in: Function and Metabolism of Phospholipids in the Central and Peripheral Nervous System ( G. Porcellati, L. Amaducci, and C. Galli, eds.), Plenum Press, New York, pp. 317–356.

    Google Scholar 

  • Beard, R. R., and Wertheim, G. A., 1967, Behavioral impairment associated with small doses of carbon monoxide, Am. J. Pub. Health 57: 2012–2022.

    PubMed  CAS  Google Scholar 

  • Berger, H., 1934, Uber das elekeroenkephalogramm des menschen IX, Arch. Psychiatr. 102: 538–557.

    Google Scholar 

  • Bert, P., 1878, La pression barometrique, Paris, Masson et Cie., p. 347.

    Google Scholar 

  • Birren, J. E., Fisher, M. B., Vollmer, E., and King, B. G., 1946, Effects of anoxia on performance at several simulated altitudes, J. Exp. Physiol. 36: 36–39.

    Google Scholar 

  • Bito, L. S., and Myers, R. E., 1972, On the physiological response of the cerebral cortex to acute stress (reversible asphyxia), J. Physiol. (London) 221: 349–370.

    CAS  Google Scholar 

  • Blass, J. P., and Gibson, G. E., 1979, Consequences of mild, graded hypoxia, in: Advances in Neurology, Volume 26 ( S. Fahn, J. N. Davis, and L. P. Rowland, eds.), Raven Press, New York, pp. 229–254.

    Google Scholar 

  • Boismare, F., LePoncin, M., Belliard, J. P., and Hacpille, L., 1975, Reduction of hypoxia induced disturbances by previous treatment with benserazide and L. Dopa in rats, Experientia 31: 1190–1192.

    PubMed  CAS  Google Scholar 

  • Boismare, F., LePoncin-Lafitte, M., and Rapin, J. R., 1979, Blockade of the different enzymatic steps in the synthesis of brain amines and memory (CAR) in hypoxic hypobaric rats treated or not with L-DOPA, in: Catecholamines: Basic and Clinical Frontiers ( E. Usdin, I. J. Kopin, and J. Barchas, eds.), Pergamon Press, New York, pp. 1726–1728.

    Google Scholar 

  • Booth, R. F. G., Harvey, S. A. K., and Clark, J. B., 1983, Effects of in vivo hypoxia on acetylcholine synthesis by rat brain synaptosomes, J. Neurochem. 40: 106–110.

    PubMed  CAS  Google Scholar 

  • Bootheby, W. M., 1945, Effects of high altitude on the composition of air: Introductory remarks, Proc. Staff Meet. Mayo Cl. 20: 209.

    Google Scholar 

  • Borgstrom, L., Johannson, H., and Siesjo, B. K., 1975a, The relationship between arterial P02 and cerebral blood flow in hypoxic hypoxia, Acta Physiol. Scand. 93: 423–432.

    CAS  Google Scholar 

  • Borgstrom, L., Johannson, H., and Siesjo, B. K., 1975b, Influence of acute normovolemic anemia on cerebral blood flow and O2 consumption in anesthetized rats, Acta Physiol. Scand. 93: 505–514.

    CAS  Google Scholar 

  • Borgstrom, L., Norberg, K., and Siesjo, B. K., 1976, Glucose consumption in rat cerebral cortex in normoxia, hypoxia and hypercapnia, Acta Physiol. Scand. 96: 569–574.

    CAS  Google Scholar 

  • Bradford, H. F., 1969, Respiration in vitro of synaptosomes from mammalian cerebral cortex, J. Neurochem. 16: 675–684.

    PubMed  CAS  Google Scholar 

  • Brierley, J. B., 1973, Pathology of cerebral ischemia, in: Cerebral Vascular Disease 8th Conference ( H. F. McDowell and R. W. Brennan, eds.), Grunne and Stratton, New York, pp. 59–75.

    Google Scholar 

  • Brierley, J. B., Brown, A. W., Excell, B. J., and Meldrum, B., 1969, Brain damage in the Rhesus monkey resulting from profound arterial hypotension–I: Its nature, distribution and general physiological correlates, Br. Res. 13: 68–83.

    CAS  Google Scholar 

  • Brierley, J. B., Prior, P. F., Calverely, J., and Brown, A. W., 1978, Profound hypoxia in Papio Anuris and Macaca Mulatta—Physiological and neuropathological effects, J. Neurol. Sci. 37: 1–29.

    CAS  Google Scholar 

  • Brown, A. W., and Brierley, J. B., 1968, The natural distribution in earliest stages of anoxic ischaemic nerve cell damage in the rat brain as defined by the optical microscope, Br. J. Exp. Pathol. 49: 87–106.

    CAS  Google Scholar 

  • Brown, R. M., and Engle, J., 1973, Evidence for catecholamine involvement in the suppression of locomotor activity due to hypoxia, J. Pharm. Pharmacol. 25: 815–819.

    PubMed  CAS  Google Scholar 

  • Brown, R. M., Davis, J. N., and Carlsson, A., 1973, Dopa reversal of hypoxic-induced disruption of the conditioned avoidance response, J. Pharm. Pharmacol. 25: 412–414.

    PubMed  CAS  Google Scholar 

  • Brown, R. M., Snider, S. R., and Carlsson, A., 1974, Changes in biogenic amine synthesis and turnover induced by hypoxia and/or foot shock stress.II. The central nervous system, J. Neural Transm. 35: 293–305.

    PubMed  CAS  Google Scholar 

  • Brown, R. M., Kehr, W., and Carlsson, A., 1975, Functional and biochemical aspects of catecholamine metabolism in brain under hypoxia, Brain Res. 85: 491–509.

    CAS  Google Scholar 

  • Buckley, J., Solaro, R., and Barry, H., 1969, Effects of phenformin HCI on rats subjected to stimulated high altitude, J. Pharm. Sci. 58: 348–351.

    PubMed  CAS  Google Scholar 

  • Buerk, D. G., and Saidel, G. M., 1978, Local kinetics of oxygen metabolism in brain and liver tissues, Microvasc. Res. 16: 391–405.

    PubMed  CAS  Google Scholar 

  • Bures, J., and Buresova, O., 1981, Cerebral [K le increase as an index of the differential susceptibility of brain structures to terminal anoxia and electroconvulsive shock, J. Neurobiol. 12: 211–220.

    PubMed  CAS  Google Scholar 

  • Burkard, W. P., 1972, Catecholamine-induced increase in cyclic adenosine 3’,5’-monophosphosphate in rat brain in vivo, J. Neurochem. 19: 2615–2619.

    PubMed  CAS  Google Scholar 

  • Burner, J., Lambertsen, C. J., Owen, S. G., Wendel, H., and Chiedi, H., 1957, Effect of 0.08 and 0.8 atmospheres of inspired P02 on cerebral hemodynamics at a “constant” alveolar PCO2 of 43, Fed. Proc. 16: 130.

    Google Scholar 

  • Cain, S. M., 1956, Appearance of excess lactate in anesthetized dogs during anemic and hypoxichypoxia, Am. J. Physiol. 209: 604–610.

    Google Scholar 

  • Carlsson, A., 1966, Pharmacological depletion of catecholamine stores, Pharmacol. Rev. 18: 541–549.

    CAS  Google Scholar 

  • Carlsson, C. A., Hagerdal, M., Kaasik, A. E., and Siesjo, B. K., 1977, A catecholamine mediated increase in cerebral oxygen uptake during immobilization stress in rats, Brain Res. 119: 223–231.

    CAS  Google Scholar 

  • Chan, P. H., and Fishman, R. A., 1978, Brain edema: Induction in cortical slices by polyunsaturated fatty acids, Science 201: 358–360.

    PubMed  CAS  Google Scholar 

  • Chan, P. H., Fishman, R. A., Lee, J. L., and Quan, S. C.. 1980, Arachidonate acid-induced swelling in incubated rat brain cortical slices: Effects of bovine serum albumin, Neurochem. Res. 5: 629–636.

    CAS  Google Scholar 

  • Chance, B., and Schoener, B., 1962a, Correlation of oxidation-reduction changes of intracellular reduced pyridine nucleotide and changes in electroencephalogram of the rat in anoxia. Nature 195: 956–958.

    PubMed  CAS  Google Scholar 

  • Chance, B., Cohen, P., Jobsis, F.. and Schoener, B., 1962b, Intracellular oxidation-reduction states in vivo, Science 137: 499–508.

    PubMed  CAS  Google Scholar 

  • Clench, L, Ferrell, R. E., and Schull, W. J., 1982, Effect of chronic altitude hypoxia on hematologic and glycolytic parameters, Am. Physiol. Soc. 1982: r447.

    Google Scholar 

  • Cohen, M. M., 1962, The effect of anoxia on the chemistry and morphology of cerebral cortex slices in vitro, J. Neurochem. 9: 337–344.

    PubMed  CAS  Google Scholar 

  • Cohen, P. J., 1967, Effects of hypoxia and normocarbia on cerebral blood flow and metabolism in conscious man, J. Appl. Physiol. 23: 183–189.

    PubMed  CAS  Google Scholar 

  • Cohen, P. J., Alexander, S. C., Smith, T. C., Reivich, M., and Wollman, H., 1967, Effects of hypoxia and normocarbia on cerebral flood flow and metabolism in conscious man, J. Appl. Physiol. 23: 183–189.

    PubMed  CAS  Google Scholar 

  • Colin, F., Bourgain, R., and Manil, J., 1978, Progressive alteration of somatosensory evoked potential waveforms with lowering of cerebral tissue PO2 in the rabbit, Arch. Int. Physiol. Biochim. 86: 677–679.

    PubMed  CAS  Google Scholar 

  • Corrodi, H., and Hanson, L. C. F., 1966, Central effects of an inhibitor of tyrosine hydroxylation, Psycho Pharmacologia (Berl.) 10: 116–125.

    CAS  Google Scholar 

  • Crawford, D. W., Back L. H., and Cole, M. A., 1980, In vivo oxygen transport in the normal rabbit femoral arterial wall, J. Clin. Invest. 65: 1498–1508.

    CAS  Google Scholar 

  • Crow, T. J.. and Kelman, G. R., 1969, Impairment of mental performance at a simulated altitude of 8000 feet, Aerospace Med. 40: 981.

    Google Scholar 

  • Crow, T. J., and Kelman, G. R., 1971, Effect of mild acute hypoxia on human short-term memory, Br, J. Anaesth. 43: 548–552.

    CAS  Google Scholar 

  • Cvmerman, A., Robinson, S. M., and McCullough, D., 1972, Alteration of rat brain catecholamine metabolism during exposure to hypobaric hypoxia, Can. J. Physiol. 50: 321–327.

    Google Scholar 

  • Daniels, J., and Chosey. J., 1972, Epinephrine and norepinephrine excretion during running training at sea level and altitude, Med. Sci. Sports 4: 219–224.

    CAS  Google Scholar 

  • Davis, P. A., Davis, H., and Thompson, J. W., 1938, Progressive changes in the human electroencephalogram under low oxygen tension, Am. J. Physiol. 1234: 51–52.

    Google Scholar 

  • Davis. J. N., and Carlsson, A., 1973a, Effect of hypoxia on tyrosine and trvptophan hydroxylation in unanesthetized rat brain, J. Neurochem. 20: 913–915.

    Google Scholar 

  • Davis, J. N., and Carlsson, A., 1973b, The effect of hypoxia on monoamine synthesis, levels and metabolism in rat brain, J. Neurochem. 21: 783–790.

    PubMed  CAS  Google Scholar 

  • Debijadji, R., Perovic, L., Varagic, V., and Stosic, N., 1969, Effect of hypoxic-hypoxia on the catecholamine content and some cytochemical changes in the hypothalamus of the cat, Aerospace Med. 40: 445–449.

    Google Scholar 

  • Dell, P., and Bonvallet, M., 1954, Controle direct et reflexe de l’activite du systeme reticulaire activateur ascendant du tronc cerebral par l’oxygene et le gaz carbonique du sang, C. R. Seances Soc. Biol. 148: 885–858.

    Google Scholar 

  • Dell, P., Hugelin, A., and Bonvallet, M., 1961, Effects of hypoxia on the reticular and cortical diffuse systems, in: Cerebral Anoxia and the Electroencephalogram ( H. Gastaut and J. S. Meyer, eds.), Charles C Thomas, Springfield, Illinois, pp. 46–58.

    Google Scholar 

  • Denison, D., and Ledwith, F., 1964, Complex reaction times at simulated cabin altitude of 8000 feet, R.A.F. Institute of Aviation Medicine Report No. 284 ( 1964 ), Ministry of Defense, London.

    Google Scholar 

  • Denison, D. M., Ledwith, F., and Poulton, E. C., 1966, Complex reaction times at stimulated altitudes of 5000 feet and 8000 feet, Aerospace Med. 37: 1010.

    CAS  Google Scholar 

  • Denzlinger, C., Hertting, G., and Jackisch, R., 1982, Synaptosomal calcium uptake systems: Prostaglandins are probably not involved in the regulation of calcium fluxes into and within the nerve endings, J. Neurochem. 39: 499–506.

    CAS  Google Scholar 

  • Diament, M. L., and Palmer, K. N. V., 1966, Postoperative changes in gas tensions of arterial blood and ventilatory function, Lancet 2: 180.

    PubMed  CAS  Google Scholar 

  • Diekman, V., 1976, EEG analysis by a autoregressive moving average model application to the study of EEG changes measured under various blood gas levels, in: Proceedings of the 2nd Symposium of the Study Group for EEG Methodlogy, Kinstanz, Jogny sur Vevey, AEG-Telefunken, EDP, A-510, pp. 369–378.

    Google Scholar 

  • Dienel, G., 1983, Accumulation and retention of 45calcium in postischemic rat brain, (Abstr.) J. Neurochem. 41 (suppl.): S22.

    Google Scholar 

  • Dolivo, M., 1974, Metabolism of mammalian sympathetic ganglia, Fed. Proc. Am. Soc. Exp. Biol. 3: 1043–1048.

    Google Scholar 

  • Drachman, D. A., 1978, Central cholinergic system, in: Psychopharmacology: A Generation of Progress ( M. A. Lipton, A. Dimascio, and K. F. Killaam, eds.), Raven press, New York, pp. 651–662.

    Google Scholar 

  • Dripps, R. D., and Comroe, J. H., 1947, The effect of the inhalation of high and low oxygen concentrations on respiratory, pulse rate, ballistocardiogram and arterial oxygen saturation (oximeter) of normal individuals, J. Am. Physiol. 149: 277–291.

    CAS  Google Scholar 

  • Duffy, T. E., Nelson, S. R., and Lowry, O. H., 1972, Cerebral carbohydrate metabolism during acute hypoxia and recovery, J. Neurochem. 19: 959–977.

    PubMed  CAS  Google Scholar 

  • Dulfano, M. J., and Sadamu, I., 1965, Hypercapnia: Mental changes and extrapulmonary complications: An expanded concept of the CO2 intoxication syndrome, Ann. Intern. Med. 63: 829–841.

    PubMed  CAS  Google Scholar 

  • Dyer, R. S., 1980, Effects of prenatal and postnatal exposure to carbon monoxide on visually evoked responses in rats, in: Neurotoxicity of the Visual System ( W. H. Merigan and B. Weiss, eds), Raven Press, New York, pp. 17–33.

    Google Scholar 

  • Dyer, R. S., and Annau, A., 1978, Carbon monoxide and superior colliculus evoked potentials, in: Multidisciplinary Perspectives in Event-Related Brain Potential Research ( D. A. Otto, ed.), U.S. Government Printing Office, Washington, D.C., pp. 417–419.

    Google Scholar 

  • Ebeigbe, A. B., 1982, Influence of hypoxia on contractility and calcium uptake in rabbit aorta, Experientia 38: 935–937.

    PubMed  CAS  Google Scholar 

  • Ellis, M. M., 1919, Respiratory volumes of men during short exposures to constant low oxygen tensions attained by rebreathing, Am. J. Physiol. 50: 267.

    Google Scholar 

  • Ernest, J. T., and Krill, A. E., 1971, The effect of hypoxia on visual function (psychophysiological studies), Invest. Ophthalmol. 10: 323–328.

    CAS  Google Scholar 

  • Ernsting, J., 1966, Effects of hypoxia upon human performance and electroencephalogram, in: Oxygen Measurements in Blood and Tissues and Their Significance ( J. P. Payne and W. B. Hill, eds.), Churchill Ltd., London, pp. 245–259.

    Google Scholar 

  • Ernsting, J., Gedye, J. L., and McHardy, G. J. R., 1962, Anoxia subsequent to rapid decompression, in: Human Problems of Supersonic and Hypersonic Flight ( A. Buckanan-Barbour and H. F. Whittinghan, eds.), Pergamon press, Oxford, p. 359.

    Google Scholar 

  • Fan, F.-C., Chen, R. Y. Z., Schuessler, G. B., and Chien S., 1980, Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog, Am. Physiol. Soc. 1980: H545.

    Google Scholar 

  • Fernadez-Guardiola, A., Bostem, F., Naquet, R., and Gastaut, H., 1959, Effets de l’anoxie sur les potentiels evoques par la lumiere chez l’homme et chez l’animal, J. Physiol. (Paris) 51: 463.

    Google Scholar 

  • Fishman, R. A., and Chan, P. H., 1981, Hypothesis: Membrane phospholipid degradation and polyunsaturated fatty acids play a key role in the pathogenesis of brain edema, Ann. Neurol. 10: 75.

    Google Scholar 

  • Fitch, R. F., 1964, Mountain sickness. A cerebral form, Ann. Intern. Med. 60: 871–876.

    PubMed  CAS  Google Scholar 

  • Fiskum, G., and Lehninger, A. L., 1979, Regulated release of Cat from respiring mitochondria by Ca2+/2H+ antiport, J. Biol. Chem. 254: 6236–6239.

    PubMed  CAS  Google Scholar 

  • Flohr, H., 1979, Hypoxia-induced retrograde amnesia, in: Brain Mechanisms in Memory and Learning: From the Single Neuron to Man ( M. A. B. Brazier, ed.), Raven Press, New York, pp. 277–291.

    Google Scholar 

  • Folbergrova, J., Nilsson, B., and Sakabe T., 1981, The influence of hypoxia on the concentrations of cyclic nucleotides in the rat brain, J. Neurochem. 36: 1670–1674.

    PubMed  CAS  Google Scholar 

  • Freeman, G. B., and Gibson, G. E., 1984, Stress indices in blood in animals restrained for focussed microwave irradiation, Fed. Proc. 43: 772.

    Google Scholar 

  • Frieder, B., and Allweis, C., 1982, Delayed post hypoxic transient amnesia is not associated with electrical brain seizures, Physiol. Behay. 29: 1059–1064.

    CAS  Google Scholar 

  • Furlow, T. W., and Bass, N. H., 1975, Stroke in rats produced by carotid injection of sodium arachidonate, Science 187: 658–660.

    PubMed  CAS  Google Scholar 

  • Gardiner, M., Nilsson, B., Rehncrona, S., and Siesjö, B. K., 1981, Free fatty acids in rat brain in moderate and severe hypoxia, J. Neurochem. 36: 1500–1505.

    PubMed  CAS  Google Scholar 

  • Gastaut, H., and Meyer, J. S. (eds.), 1961, Cerebral Anoxia and the Electroencephalogram, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Gedye, J. L., 1964, Transient changes in the ability to reproduce a sequential operation following rapid decompression, R.A.F. Institute of Aviation Medicine Report No. 271 ( 1964 ), Ministry of Defense (Air), London.

    Google Scholar 

  • Gerathewohl, S., 1951, Methods of the analysis of psychomotor performance under hypoxia, J. Aviat. Med. 22: 196–206.

    PubMed  CAS  Google Scholar 

  • Gibbs, F. A., Davis, H., and Lennox, W. G., 1935, Electroencephalogram in epilepsy and in conditions of impaired consci’usness, Arch. Neurol. Psychiatr. 34: 1133–1148.

    Google Scholar 

  • Gibbs, F. A., Williams, D., and Gibbs, E. L., 1940, Modification of the cortical frequency spectrum by changes in CO2, blood sugar and O2, J. Neurophysiol. 3: 49–58.

    CAS  Google Scholar 

  • Gibbs, F. A., Gibbs, E. L., and Lennox, W. G., 1943, The value of carbon dioxide in counteracting the effects of low oxygen, J. Aviat. Med. 14: 250.

    CAS  Google Scholar 

  • Gibson, G. E., and Blass, J. P., 1976a, Impaired synthesis of acetylcholine in brain accompanying hypoglycemia and mild hypoxia, J. Neurochem. 27: 37–42.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., and Blass, J. P., 1976b, Inhibition of acetylcholine synthesis and carbohydrate utilization by maple-syrup-urine disease metabolites, J. Neurochem. 26: 1073–1078.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., and Blass, J. P., 1976c, A relation between [NAD-1/[NADH] potential and glucose utilization in rat brain slices, J. Biol. Chem. 25: 4127–4130.

    Google Scholar 

  • Gibson, G. E., and Blass, J. P., 1979, Proportional inhibition of acetylcholine synthesis accompanying impairment of 3-hydroxybutyrate oxidation in rat brain slices, Biochem. Pharmacol. 28: 133–139.

    CAS  Google Scholar 

  • Gibson, G. E., and Duffy, T. E.. 1981, Impaired synthesis of acetylcholine by mild hypoxic hypoxia or nitrous oxide, J. Neurochem. 36: 28–33.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., and Peterson, C., 1982, Decreases in the release of acetylcholine in vitro with low oxygen, Biochem. Pharmacol. 31: 111–115.

    CAS  Google Scholar 

  • Gibson, G. E., and Peterson C., 1983, Acetylcholine metabolism in septum and hippocampus in vitro, J. Biol. Chem. 258: 1142–1145.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., and Peterson, C., 1984, Pharmacological approaches to age-related deficits in oxidative metabolism, in: Assessment in Geriatric Psychopharmacology ( T. Crook, S. Ferris, and R. Bartus, eds.), Mark Powley Associates, New Canaan, Connecticut, pp. 323–343.

    Google Scholar 

  • Gibson, G. E., Jope, R., and Blass, J. P., 1975, Decreased synthesis of acetylcholine accompanying impaired oxidation of pyruvic acid in rat brain minces, Biochem. J. 148: 17–23.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E.. Shimada, M., and Blass, J. P., 1978, Alterations in acetylcholine synthesis and in cycle-GMP in mild cerebral hypoxia, J. Neurochem. 31: 757–760.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., Shimada, M., and Blass, J. P., 1979, Protection by tris(hydroxymethyl)aminomethane against behavioral and neurochemical effects of hypoxia, Biochem. Pharmacol. 28: 747–750.

    CAS  Google Scholar 

  • Gibson, G. E., Peterson, C., and Sansone, J., 1981a, Decreases in amino acid and acetylcholine metabolism during hypoxia, J. Neurochem. 37: 192–201.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., Peterson, C., and Sansone, J., 1981b, Neurotransmitter and carbohydrate metabolism during aging and mild hypoxia, Neurobiol. Aging 2: 165–172.

    CAS  Google Scholar 

  • Gibson, G. E., Pelmas, C. J., and Peterson, C., 1983, Cholinergic drugs and 4-aminopyridine alter hypoxic-induced behavioral deficits, Pharmacol. Biochem. Behay. 18: 909–916.

    CAS  Google Scholar 

  • Godfraind, J. M., Kawamura, H., Krnjevic, K., and Pumain, R., 1971, Actions of dinitrophenol and some other metabolic inhibitors on cortical neurones, J. Physiol. 213: 199–222.

    Google Scholar 

  • Goldman, R. H., and Harrison, D. C., 1970, The effects of hypoxia and hypercapnia on myocardial catecholamines, J. Pharmacol. Exp. Ther. 174: 307–314.

    CAS  Google Scholar 

  • Grant, I., Heaton, R. K., McSweeny, A. J., Adams, K. M., and Timms, R. M., 1982, Neuropsychologic findings in hypoxemic chronic obstructive pulmonary disease, Arch. Intern. Med. 142: 1470 1476.

    Google Scholar 

  • Groll-Knapp, E., Haider, M., Hoeller, H., Jenkner, G., and Stidl, H. G., 1978, Neuro-and psycho-physiological effects of moderate carbon monoxide exposure, in: Multidisciplinary Perspectives in Event-Related Brain Potential Research ( D. A. Otto, ed.), U.S. Government Printing Office, Washington, D.C., pp. 424–430.

    Google Scholar 

  • Grossman, R. G., and Williams V. F., 1971, Electrical activity and ultrastructure of cortical neurones and synapses in ischemia, in: Brain Hypoxia ( J. B. Brierley and B. S. Meldrum, eds.), Spastics International Medical Publication/Lippincott, Philadelphia, pp. 61–75.

    Google Scholar 

  • Gurdjian, E. S., Stone, W. E., and Webster, J. E., 1944, Cerebral metabolism in hypoxia, Arch. Neurol. Psychiatr. 51: 472–477.

    CAS  Google Scholar 

  • Gurvitch, A. M., and Ginsburg, D. A., 1977, Types of hypoxic and posthypoxic delta activity in animals and man, Electroencephalogr. Clin. Neurophysiol. 42: 297–308.

    CAS  Google Scholar 

  • Haldane, J. S., Kellas, A. M., and Kennaway, E. L., 1919, Experiments on acclimatisation to reduced atmospheric pressure, J. Physiol. (London) 53: 181.

    CAS  Google Scholar 

  • Hall, F. G., 1966, Minimal utilizable oxygen and the oxygen dissociation curve of blood of rodents, J. Appl. Physiol. 21: 375–378.

    CAS  Google Scholar 

  • Hansen, A. J., Hounsgaard, J., and Jahnsen, H., 1982, Anoxia increases potassium conductance in hippocampal nerve cells, Acta Physiol. Scand. 115: 301–310.

    CAS  Google Scholar 

  • Harding, D. P., and Poole-Wilson, P. A., 1980, Calcium exchange in rabbit myocardium during and after hypoxia: Effect of temperature and substrate, Cardiovas. Res. 14: 435–445.

    CAS  Google Scholar 

  • Harvey, S. A. K., Booth, R. F. G., and Clark, J. B., 1982, The effects in vitro of hypoglycaemia and recovery from anoxia on synaptosomal metabolism, Biochem. J. 206: 433–439.

    PubMed  CAS  Google Scholar 

  • Hecht, S., 1945, Anoxia and brightness discrimination, J. Gen. Physiol. 29: 335.

    Google Scholar 

  • Hedner, T., and Lundborg, P., 1979, Regional changes in monoamine synthesis in the developing rat brain during hypoxia, Acta. Physiol. Scand. 106: 139–143.

    CAS  Google Scholar 

  • Hempel, F. G., Jobsis, F. F., La Manna, J. C., Rosenthal, M., and Saltzman, H. A., 1977, Oxidation of cerebral cytochromes a,a3 by oxygen plus carbon dioxide at hyperbaric pressures, J. Appl. Phyiol. 43: 872–877.

    Google Scholar 

  • Hillman, H. H., and Mcllwain, H., 1961, Membrane potentials in mammalian cerebral tissues in vitro: Dependence on ionic environment, J. Physiol. (London) 157: 263–278.

    CAS  Google Scholar 

  • Hirsch, H., Bange, F., Pulver, G., and Steffens, I., 1960, Evoked responses of the cat’s visual cortex to optic tract stimulation at temperatures between 39 and 15 °C, Electroencephalogr. Clin. Neurophysiol. 12: 679–684.

    CAS  Google Scholar 

  • Hirsch, J. A., and Gibson, G. E., 1982a, Anoxia inhibits release of acetylcholine but not of nor-epinephrine from rat-brain slices, Fed. Proc. 41: 8738.

    Google Scholar 

  • Hirsch, J. A., and Gibson, G. E., 1982b, The selective alteration of neurotransmitter release by anoxia, Soc. Neurosci. Abst. 8: 794.

    Google Scholar 

  • Hockaday, J. M., Potts, F., Epstein, E., Bonazzi, A., and Schwab, R. S., 1965, Electroencephalographic changes in acute cerebral anoxia from cardiac or respiratory arrest, Electroencephalogr. Clin. Neurophysiol. 18: 575–586.

    CAS  Google Scholar 

  • Homer, L. D., Shelton, J. B., and Williams, T. J., 1983, Diffusion of oxygen in slices of rat brain, Amer. J. Physiol. 244: 15–22.

    Google Scholar 

  • Horrocks, L. A., Spanner, S., Mozzi, R., Chun Fu, S., D’Amato, R. A., and Krakowa, S., 1978, Advances in experimental medicine and biology, in: Myelination and Demyelination, Volume 100 ( J. Palo, ed.), Plenum Press, New York, pp. 423–438.

    Google Scholar 

  • Hosko, M., 1970, The effect of carbon monoxide on the visual evoked potential and the spontaneous electroencephalogram, Arch. Environ. Health 21: 174–180.

    CAS  Google Scholar 

  • Huckabee, W. E., 1958, Relationship of pyruvate and lactate during anaerobic metabolism. Effect of breathing low oxygen gases, J. Clin. Invest. 37: 264–271.

    PubMed  CAS  Google Scholar 

  • Hugelin, A., Bonvallet, M., and Dell P., 1959, Activation reticulaire et corticale d’origine chemoceptive au cours de hypoxic, Electroencephalogr. Clin. Neurophysiol. 11: 325–340.

    CAS  Google Scholar 

  • Hurder, W., 1950, Relations between brain and behavior in rats following exposure to anoxia, Am. Psycho]. 5: 225.

    Google Scholar 

  • Hurder, W., 1951, Changes in maze performance in rats following exposure to anoxia, J. Comp. Physiol. Psycho]. 44: 473–478.

    CAS  Google Scholar 

  • Hurwitz, D. A., Robinson, S. M., and Barofsky, I., 1971, Behavioral decrements and brain cate- cholamine changes in rats exposed to hypobaric hypoxia, Psychopharmacology 19: 26–33.

    CAS  Google Scholar 

  • Ingvar, D. H., Sjolund, B., and Ardo, A., 1976, Correlation between dominant EEG frequency, cerebral oxygen uptake, and blood flow, Electroencephalogr. Clin. Neurophysiol. 41: 268–276.

    CAS  Google Scholar 

  • Jobsis, F. F., 1979, Oxidative metabolic effects of cerebral hypoxia, in: Advances in Neurology, Volume 26 ( S. Fahn, J. N. Davis, and L. P. Rowland, eds.), Raven Press, New York, pp. 299–318.

    Google Scholar 

  • Jobsis, F. F., and LaManna, J. C., 1978, Kinetic aspects of intracellular redox reactions. In vivo effects during and after hypoxia and ischemia, in: Extrapulmonary Manifestations of Respiratory Disease ( E. D. Robin, ed.), Marcel Dekker, Inc., New York, pp. 63–106.

    Google Scholar 

  • Jobsis, F. F., Keizer, J. H., LaManna, J. C., and Rosenthal, M., 1977, Reflectance spectrophotometry of cytochrome a,a3 in vivo, J. Appl. Physiol. Respir. Environ. Exercise Physiol. 43 (5): 1977.

    Google Scholar 

  • Johannsson, H., and Siesjo, B. K., 1974, Blood flow and oxygen consumption in the rat in hypoxic hypoxia, Acta Physiol. Scand. 91: 136–138.

    PubMed  CAS  Google Scholar 

  • Johannsson, H., and Siesjo, B. K., 1975a, Cerebral blood flow and oxygen consumption in the rat in hypoxic hypoxia, Acta Physiol. Scand. 93: 269–276.

    CAS  Google Scholar 

  • Johannsson, H., and Siesjo, B. K., 1975b, Brain energy metabolism in anesthetized rats in acute anemia, Acta Physiol. Scand. 93: 515–525.

    CAS  Google Scholar 

  • Kahlson, G., and Maclntosh, F. C., 1939, Acetylcholine synthesis in a sympathetic ganglion, J. Physiol. 97: 408–416.

    Google Scholar 

  • Kalin, E. M., Tweed, W. A., Lee, J., and MacKeen, W. L., 1975, Cerebrospinal-fluid acid-base and electrolyte changes resulting from cerebral anoxia in man, N. Engl. J. Med. 293: 1013–1016.

    CAS  Google Scholar 

  • Kayama, Y., 1974, Evoked potentials of the cortical visual system during and after hypoxia in cats, Electroencephalogr. Clin. Neurophysiol. 36: 619–628.

    PubMed  CAS  Google Scholar 

  • Kelman, G. R., Crow, T. J., and Bursill, A. E., 1969, Effect of mild hypoxia on mental performance assessed by a test of selective attention, Aerospace Med. 40: 301–303.

    PubMed  CAS  Google Scholar 

  • Kety, S. S., and Schmidt, C. F., 1948, The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men, J. Clin. Invest. 27: 484–492.

    CAS  Google Scholar 

  • Kiese, M., and Weger, N., 1969, Formation of ferri-haemoglobin with aminophenols in the human for the treatment of cyanide poisoning, Eur. J. Pharmacol. 7: 97–105.

    CAS  Google Scholar 

  • Kimura, H., Mittal, C., and Murad, F., 1975, Activation of guanylate cyclase from rat liver and other tissues by sodium azide, Nature 257: 700–702.

    PubMed  CAS  Google Scholar 

  • Kontos, H. A., Levasseur, J. E., Richardson, D. W., Mauck, H. P., Jr., and Patterson, J. L., Jr., 1967, Comparative circulatory responses to systemic hypoxia in man and in unanesthetized dog, J. Appl. Physiol. 3: 381–386.

    Google Scholar 

  • Kramer, R. S., Sanders, A. P., Lesage. A. M., Woodhall, B., and Sealy, W. C., 1968, The effect of profound hypothermia on preservation of cerebral ATP content during circulatory arrest, J. Thorac. Cardiovasc. Surg. 56: 699–709.

    CAS  Google Scholar 

  • Krop, H. D., Block, A. J., and Cohen. E., 1972, Neuropsychologic effects of continuous oxygen therapy in chronic obstructive pulmonary disease, Chest 64: 317–322.

    Google Scholar 

  • Ksiezak, H., and Gibson, G. E.. 1981a, Oxygen dependence of glucose and acetylcholine metabolism in slices and synaptosomes from rat brain, J. Neurochem. 30: 305–324.

    Google Scholar 

  • Ksiezak, H. J., and Gibson, G. E., 1981b, Acetylcholine synthesis and CO2 production from variously labelled glucose in rat brain slices and synaptosomes. J. Neurochem. 37: 88–94.

    PubMed  CAS  Google Scholar 

  • Kuno, T., Marukawa, A., Fujiwara, H., and Tanaka, C., 1981, Dopamine accumulation in the mouse brain under hypoxia, Jpn. J. Pharmacol. 31: 503–509.

    CAS  Google Scholar 

  • Lazarewicz, J. W., Strosznajder, J., and Gromek, A., 1972, Effects of ischemia and exogenous fatty acids on the energy metabolism in brain mitochondria, Bull. Acad. Pol. Sci. (Biol.) 20: 599–606.

    CAS  Google Scholar 

  • Ledwith, F., 1967, The effects of hypoxia on shuttle avoidance in the rat, Psychonomic Sci. 8: 203–204.

    Google Scholar 

  • Lehninger, A. L., and Remmert, L. F., 1959, An endogenous uncoupling and swelling agent in liver mitochondria and its enzymatic formation, J. Biol. Chem. 234: 2459–2464.

    PubMed  CAS  Google Scholar 

  • Li, C. L., and McIlwain, H., 1957, Maintenance of resting membrane potentials in slices of mammalian cerebral cortex and other tissues in vitro, J. Physiol. (London) 139: 178–190.

    CAS  Google Scholar 

  • Lilienthal, J. S., and Fugitt, C. H., 1946, The effect of low CO concentrations on the altitude tolerance of man, Am. J. Physiol. 145: 359–364.

    CAS  Google Scholar 

  • Linder, J., 1982, Effects of cervical sympathetic stimulation on cerebral and ocular blood flows during hemorrhagic hypotension and moderate hypoxia, Acta Physiol. Scand. 114: 379–386.

    PubMed  CAS  Google Scholar 

  • Linton, R. A. F., Miller, R., and Camerson, I. R., 1975, The effect of hypercapnia, hypoxia, and carotid sinus nerve section on hypothalamic blood flow in anesthetised rabbits, in: Blood Flow and Metabolism in the Brain ( M. Harper, B. Jennet, D. Miller, and J. Rowan, eds.) Churchill Livingstone, London, pp. 232–234.

    Google Scholar 

  • Lipton, P., and Whittingham, T. S., 1979, The effect of hypoxia on evoked potentials in the in vitro hippocampus, J. Physiol. (London) 287: 427–438.

    CAS  Google Scholar 

  • Lipton, P., and Whittingham, T. S., 1982, Reduced ATP concentration as a basis for synaptic transmission failure during hypoxia in the in vitro guinea pig hippocampus, J. Physiol. (London) 325: 51–65.

    CAS  Google Scholar 

  • Lovell, R. A., and Elliott, K. A. C., 1963, The gamma-aminobutyric acid and factor I content of brain, J. Neurochem. 10: 382–414.

    Google Scholar 

  • Lovenberg, W., Jequier, E., and Sjoerdsma, A., 1968, Tryptophan hydroxylation in mammalian systems, Adv. Pharmacol. 6A: 21–26.

    PubMed  CAS  Google Scholar 

  • Lubbers, D. W., 1968, The oxygen pressure field of the brain and its significance for the normal and critical oxygen supply of the brain, in: Oxygen Transport in Blood and Tissue ( D. W. Lubbers, U. C. Luft, G. Thews, and E. Witzleb, eds.), Georg Thieme Verlag, Stuttgart, pp. 124–139.

    Google Scholar 

  • Lutz, B. R., and Schneider, E. C., 1919, Alveolar air and respiratory volume at low oxygen tensions, Am. J. Physiol. 50: 280.

    CAS  Google Scholar 

  • MacMillan, V., 1975a, The effects of acute carbon monoxide intoxication on the cerebral energy metabolism of the rats, Can. J. Physiol. Pharmacol. 53: 354–362.

    PubMed  CAS  Google Scholar 

  • MacMillan, V., 1975b, Regional cerebral blood flow of the rat in acute carbon monoxide intoxication, Can. J. Physiol. 53: 644–650.

    CAS  Google Scholar 

  • MacMillan, V., and Siesjo, B. K., 1972, Brain energy metabolism in hypoxemia, Scand. J. Clin. Lab. Invest. 30: 127–136.

    PubMed  CAS  Google Scholar 

  • Manil, J., Colin, F., and Bourgain, L., 1977, Modifications of somatosensory evoked cortical potentials during hypoxia in the awake rabbit, Adv. Exp. Med. Biol. 94: 509–516.

    PubMed  CAS  Google Scholar 

  • Mann, P. J. G., Tennenbaum, M., and Quastel, J. H., 1938, On the mechanism of acetylcholine formation in brain in vitro, Biochem. J. 32: 243–246.

    PubMed  CAS  Google Scholar 

  • Mann, P. J. G., Tennenbaum, M., and Quastel, J. H., 1939, Acetylcholine metabolism in the central nervous system. The effects of potassium and other cations on acetylcholine liberation, Biochem. J. 33: 822–835.

    PubMed  CAS  Google Scholar 

  • Marion, J., and Wolfe, L. S., 1979, Origin of the arachidonic acid released postmortem in rat forebrain, Biochem. Biophys. Acta. 574: 25–32.

    CAS  Google Scholar 

  • McCutcheon, E. P., Frazier, D. T., and Boyarsky, L. L., 1971, Changes in the somatosensory cortical evoked potential produced by hypovolemic shock, Proc. Soc. Exp. Biol. Med. 136: 1063–1071.

    PubMed  CAS  Google Scholar 

  • McDonald, R., and Adler, F. H., 1939, Effect of anoxemia on the dark adaptation of the normal and of the vitamin A-deficient subject, Arch. Ophthalmol. 22: 980.

    CAS  Google Scholar 

  • McDowell, D. G., 1966, Interrelationships between blood oxygen tension and cerebral blood flow, in: Oxygen Measurement in Blood and Tissues ( J. F. Nunn, ed.) Churchill-Ltd., London, pp. 205–219.

    Google Scholar 

  • McFarland, R. A., 1953, Stimuli primarily related to high altitude flight, in: Human Factors in Our Transportation, McGraw-Hill, New York, pp. 153–169.

    Google Scholar 

  • McFarland, R. A., and Evans, J. N., 1939, Alterations in dark adaptation under reduced oxygen tensions, Am. J. Physiol. 127: 37.

    CAS  Google Scholar 

  • McFarland, R. A., and Forbes, W. H., 1940, The effects of variation in the concentration of oxygen and of glucose on dark adaptation, J. Gen. Physiol. 24: 69.

    PubMed  CAS  Google Scholar 

  • McFarland, R. A., Roughton, F. J. W., and Halperin, M. H., 1944, The effects of CO and altitude on visual thresholds, J. Aviat. Med. 15: 381–348.

    Google Scholar 

  • McGee, S. M., Brown, A. W., and Brierley, J. B., 1970, A combined light and electron microscope study of early anoxic-ischemic cell change in rat brain, Brain Res. 20: 193–200.

    Google Scholar 

  • Mcllwain, H., 1973, Consequences of cerebral hypoxia examined at tissue-metabolic level, in: Monographs in Neural Sciences, Volume 1 ( M. M. Cohen, ed.), Karger Basel, Chicago, pp. 122–129.

    Google Scholar 

  • Metsa-Ketala, T., Laustiola, K., Lilius, E. M., and Vapaatalo, H., 1981, On the role of cyclic nucleotides in the regulation of cardiac contractility and glycolysis during hypoxia, Acta Pharmacol. Toxicol. 48: 311–319.

    Google Scholar 

  • Michael, J. A., 1973, Neurophysiological effects of hypoxia, Monogr. Neurol. Sci. 1:65–121. Michenfelder, J. D., and Theye, R. A., 1969, The effects of profound hypocapnia and dilutional anemia on canine metabolism and blood flow, Anesthesiology 31: 449–457.

    Google Scholar 

  • Miyaoka, M., Shinohara, M., Kennedy, C., and Sokoloff, L., 1979, Alterations in local cerebral glucose utilization (LCGU) in rat brain during hypoxemia, Trans. Amer. Neurol. Assoc. 104: 104.

    Google Scholar 

  • Morris, M. E., 1974, Hypoxia and extracellular potassium activity in the guinea-pig cortex, Can. J. Physiol. 52: 872–882.

    CAS  Google Scholar 

  • Myles, A. S., and Ducker, A. J., 1973, The role of the sympathetic nervous system during exposure to altitude in rats, Int. J. Biometeor 17: 51–58.

    CAS  Google Scholar 

  • Nagao, S., Roccatorte, P., and Moody, R. A., 1978, The effects of isovolemic hemodilution and reinfusion of packed erythrocytes on somatosensory and visual evoked potentials, J. Surg. Res. 25: 530–537.

    PubMed  CAS  Google Scholar 

  • Nagatsu, T., Levett, M., and Udenfriend, S., 1964, Tyrosine hydroxylase: The initial step in nor-epinephrine biosynthesis, J. Biol. Chem. 239: 2910–2917.

    PubMed  CAS  Google Scholar 

  • Nakanishi, T., Nishroka, K., and Jarmakani, J. M., 1982, Mechanism of tissue calcium gain during reoxygenation after hypoxia in rabbit myocardium, Am. J. Physiol. 242: H437 — H449.

    PubMed  CAS  Google Scholar 

  • Naquet, R., and Fernandez-Guardiola, A., 1960, Effets de differents types d’anoxie sur l’activité electrophysiologique cerebale spontanee et evoguee chez le chat, J. Physiol. (Paris) 62: 885.

    Google Scholar 

  • Naquet, R., and Fernandez-Guardiola, A., 1961, Effects of various types of anoxia on spontaneous and evoked cerebral activity in the cat, in: Cerebral Anoxia and Electroencephalogram ( H. Gastaut and J. S. Meyer, eds.) Charles C. Thomas, Springfield, Illinois, pp. 43–51.

    Google Scholar 

  • Nelson, P. G., and Frank, K., 1963, Intracellularly recorded responses of nerve cells to oxygen deprivation, Am. J. Physiol. 205: 208–211.

    CAS  Google Scholar 

  • Nicholson, C., and Hounsgaard, J., 1983. Diffusion in the slice microenvironment and implication for physiological studies, Fed. Proc. 12: 2865–2868.

    Google Scholar 

  • Nilsson, B., Norberg, K., Nordstrom, C.-H., and Siesjo, B. K., 1975, Influence of hypoxia and hypercapnia on CBF in rats, in: International Symposium on Cerebral Blood Flow and Metabolism (M. Harper, B. Jennett, D. Miller, and J. Rowan, eds.), Churchill Livingstone, Edinburgh-London-New York, pp. 9. 19–9. 23.

    Google Scholar 

  • Noell, W., and Chin, H. I., 1950, Failure of the visual pathway during anoxia, Am. J. Physiol. 161: 573.

    CAS  Google Scholar 

  • Norberg, K., and Siesjo, B. K., 1975a, Cerebral metabolism in hypoxic hypoxia. I. Pattern of activation of glvcolysis, a re-evaluation, Brain Res. 86: 31–44.

    CAS  Google Scholar 

  • Norberg, K., and Siesjo, B. K., 1975b, Cerebral metabolism in hvpoxic hypoxia. II. Citric acid cycle intermediates and associated amino acids, Brain Res. 86: 45–54.

    CAS  Google Scholar 

  • Norberg, K., Quistorff, B., and Siesjo, B. K., 1975, Effects of hypoxia of 10–45 seconds duration on energy metabolism in the cerebral cortex of unanaesthetized and anaesthetized rats, Acta Physiol. Scand. 95: 301–310.

    PubMed  CAS  Google Scholar 

  • Nunn, J. F.. and Payne, J. P., 1962, Hypoxemia after general anaesthesia, Lancet 2: 631.

    PubMed  CAS  Google Scholar 

  • Obrist, W. D., Saltzman, H. A., Sulg, I. A., Thompson, L. W., and Townsend, R. E., 1973, The quantitative EEG in hypoxia and hyperbaric conditions, Swed. J. Defense Med. 9:446–471

    Google Scholar 

  • Otis, A. B., Rhan, H., Epstein, M. A., and Fenn, W. O., 1946, Performance as related to composition of alveolar air, Am. J. Physiol. 146: 207–221.

    CAS  Google Scholar 

  • Otto, D. A., and Reiter, L., 1978, Neurobehavioral assessment of environmental insult, in: Multidisciplinary Perspectives in Event-Related Brain Potential Research ( D. A. Otto, ed.), U.S. Government Printing Office, pp. 409–416.

    Google Scholar 

  • Otto, D., Benignus, V., Prah, J., and Converse, B., 1978, Paradoxical effects of carbon monoxide on vigilance performance and event-related potentials, in: Multidisciplinary Perspectives in Event-Related Brain Potential Research ( D. A. Otto, ed.), U.S. Printing Office, pp. 440–443.

    Google Scholar 

  • Ozawa, K., Seta, K., Araki, H., and Handa, H., 1967, Rapid liberation of potassium ions from brain mitochondria, J. Biochem. 62: 584–590.

    PubMed  CAS  Google Scholar 

  • Pastuszko, A., Wilson, D. F., Erecinska, M., and Silver, I. A., 1981, Effects of in vitro hypoxia and lowered pH on potassium fluxes and energy metabolism in rat brain synaptosomes, J. Neurochem. 36: 116–123.

    CAS  Google Scholar 

  • Pastuszko, A., Wilson, D. F., Erecinska, M., and Silver, I. A., 1982, Neurotransmitter metabolism in rat brain synaptosomes: Effect of anoxia and pH, J. Neurochem. 38: 1657–1667.

    PubMed  CAS  Google Scholar 

  • Paulson, O. B., Parving, H.-H., Olesen, J., and Shinhoj, E., 1973, Influence of carbon monoxide and of hemodilution on cerebral blood flow and blood gases in man, J. Appl. Physiol. 35: 111–116.

    PubMed  CAS  Google Scholar 

  • Petajan, J. H., Packham, S. C., Frens, D. B., and Dinger, B. G., 1976, Sequelae of carbon monoxideinduced hypoxia in the rat, Arch. Neurol. 33: 152–157.

    CAS  Google Scholar 

  • Peterson, C., and Gibson, G. E., 1982, 3,4-Diaminopyridine alters acetylcholine metabolism and behavior during hypoxia, J. Pharmacol. Exp. Ther. 222: 576–582.

    Google Scholar 

  • Peterson, C., and Gibson, G. E., 1984, Synaptosomal calcium metabolism during hypoxia and 3,4diaminopyridine treatment, J. Neurochem. 42: 248–253.

    PubMed  CAS  Google Scholar 

  • Plum, F., 1975, The metabolic encephalopathies, in: The Nervous System, Volume 2, The Clinical Neurosciences ( D. Tower, ed.), Raven Press, New York, pp. 193–201.

    Google Scholar 

  • Plum, F., and Posner, J. B., 1980, The Diagnosis of Stupor and Coma, 3rd ed., F. A. Davis Co., Philadelphia, Pennsylvania.

    Google Scholar 

  • Ponte, J., and Purves, M. J., 1974, The role of the carotid body chemoreceptors and carotid sinus baroreceptors in the control of cerebral blood vessels, J. Physiol. 237: 315–340.

    PubMed  CAS  Google Scholar 

  • Prawdicz-Neminski, W. W., 1923, Zur Kentniss der elektrischen und der innervationsvorgange in den funtionellen elementen and geweben des tierischen organismus, elektrocerebrogramm der saugetiere, Pflug. Arch. Eur. J. Physiol. 209: 362–382.

    Google Scholar 

  • Prince, D. A., Lux, H. D., and Neher, E., 1973, Measurement of extracellular potassium activity in cat cortex, Brain Res. 50: 489–495.

    CAS  Google Scholar 

  • Prioux-Guyonneau, M., Durand, J., Rapin, J. R., and Cohen, Y., 1976a, High altitude influence on the level and turnover time of cardiac norepinephrine in rats, J. Physiol. (Paris) 72: 579–587.

    CAS  Google Scholar 

  • Prioux-Guyonneau, M., Jacquot, C., Cohen, Y., and Rapin, J. R., 1976b, Influence del’ hypoxie normobare et hypobare sur le taux de renouvellement de la noradrenaline cardiaque, Experientia 32: 1024–1025.

    PubMed  CAS  Google Scholar 

  • Prioux-Guyonneau, M., Cretet, E., Jacquot, C., Rapin, J. R., and Cohen, Y., 1979, The effect of various simulated altitudes on the turnover of norepinephrine and dopamine in the central nervous system of rats, Pflug. Arch. Eur. J. Physiol. 380: 127–132.

    CAS  Google Scholar 

  • Prioux-Guyonneau, M., Mocafr-Cretet, E., Redjimi-Hafsi, F., and Jacquot, C., 1982, Changes in brain 5-hydroxytryptamine metabolism induced by hypobaric hypoxia, Gen. Pharmacol. 13: 251–254.

    PubMed  CAS  Google Scholar 

  • Pull, I., Jones, D. A., and Mcllwain, H., 1972, Superfused cerebral tissues in hypoxia: Neurotransmitter and amino acid retention; Labile constituents and response to excitation, J. Neurobiol. 3: 311–323.

    CAS  Google Scholar 

  • Quastel, J., Tennenbaum, M., and Wheatley, A. H. M., 1936, Choline ester formation in and choline esterase activities of tissues in vitro, Biochem. J. 30: 1668–1681.

    PubMed  CAS  Google Scholar 

  • Rafalowska, U., Erecinska, M., and Wilson, D. F., 1980, The effect of acute hypoxia on synaptosomes from rat brain, J. Neurochem. 34: 1160–1165.

    PubMed  CAS  Google Scholar 

  • Rahn, H., and Otis, A. B., 1946, Alveolar air during simulated flights to high altitudes. Am. J. Physiol. 150: 202–221.

    Google Scholar 

  • Rebert, C. S., Houghton, P. W., Howd, R. A., and Pryor, G. T., 1982, Effects of hexane on the brainstem auditory response and caudal nerve action potential, Neurobehay. Toxicol. Teratol. 4: 79–85.

    CAS  Google Scholar 

  • Rehncrona, S., Siesjo, B. K., and Westerberg, E., 1978, Adenosine and cyclic AMP in cerebral cortex of rats in hypoxia, status epilepticus and hypercapnia, Acta Physiol. Scand. 164: 453–463.

    Google Scholar 

  • Rhoads, D. E., Kaplan, M. A., Peterson, N. A., and Raghupathy, E., 1982, Effects of free fatty acids on synaptosomal amino acid uptake systems, J. Neurochem. 38: 1255–1260.

    CAS  Google Scholar 

  • Rosen, R., Simonson, E., and Baker, J., 1961, Electroencephalograms during hypoxia in healthy men, Arch. Neurol. 5: 648–654.

    Google Scholar 

  • Rosenthal, M., and LaManna, J. C., 1977, Oxidative metabolism and electrophysiological activity in intact central nervous system, in: Oxygen and Physiological Function ( F. F. Jobsis, ed.), Professional Information Library, Dallas, Texas, pp. 515–530.

    Google Scholar 

  • Rosenthal, M., LaManna, J. C., Jobsis, F. F., Levasseur, J. E., Kontos, H. A., and Patterson, J. L., 1976, Effects of respiratory gases on cytochrome a in intact cerebral cortex. Is there a critical P02?, Brain Res. 108: 143–154.

    PubMed  CAS  Google Scholar 

  • Rubio, R., Berne, R. M., Beckman, E. L., and Curnish, R. R., 1975, Relationship between adenosine concentration and oxygen supply in rat, Am. J. Physiol. 228: 1896–1902.

    PubMed  CAS  Google Scholar 

  • Saligaut, C., Moore, N., Lerclerc, J. L., and Boismare, F., 1981, Hypobaric hypoxia: Central catecholamine levels, cortical P02 and avoidance response in rats treated with apomorphine, Aviat. Space Environ. Med. 52: 166–170.

    PubMed  CAS  Google Scholar 

  • Salford, L. G., Plum, F., and Siesjo, B. K., 1973, Graded hypoxic-oligemia in rat brain. II. Neuro-pathological alterations and their implications, Arch. Neurol. 29 (4): 234–238.

    PubMed  CAS  Google Scholar 

  • Scheinberg, P., 1951, Cerebral blood flow and metabolism in pernicious anemia, Blood 6: 213.

    PubMed  CAS  Google Scholar 

  • Schmahl, F. W., Betz, E., Dettinger, E., and Hohorst, H. J., 1966, Energiestoffwechsel der Grosshirnrinde und elektroencephalogramm bei sauerstoffmangel, Pflug. Arch. Eur. J. Physiol. 292: 46–59.

    CAS  Google Scholar 

  • Schultz, H., Silverstein, P. R., Vapalahti, M., Bruce, D. A., Mela, L., and Langfit, T., 1973a, Brain mitochondrial function after ischemia and hypoxia. I. Ischemia induced by increased intra-cranial pressure, Arch. Neurol. 29: 408.

    Google Scholar 

  • Schultz, H., Silverstein, P. R., Vapalahti, M., Bruce, D. A., Mela, L., and Langfit, T., 1973b, Brain mitochondrial function after ischemia and hypoxia. II. Normotensive systemic hypoxia, Arch. Neurol. 29: 417.

    Google Scholar 

  • Scott, I. D., Akerman, K. E. O., and Nicholls, D. G., 1980, Calcium ion transport by intact synaptosomes, Biochem. J. 192: 873–880.

    PubMed  CAS  Google Scholar 

  • Scow, J., Krasna, L., and Ivy, A., 1950, The immediate and accumulative effect in psychomotor performance of exposure to hypoxia, high altitude and hyperventilation, J. Aviat. Med. 21: 7981.

    Google Scholar 

  • Scremin, A. M. E., and Scremin, O. U., 1979, Physostigmine induced cerebral protection against hypoxia, Stroke 10: 142–143.

    PubMed  CAS  Google Scholar 

  • Seiden, L. S., and Carlsson, A., 1964, Brain and heart catecholamine levels after L-DOPA administration in reserpine treated mice correlations with a conditioned avoidance response, Psychopharmacolo,gia 5: 178–181.

    CAS  Google Scholar 

  • Seiden, L. S., and Martin, T. W., 1971, Potentiation of effects of L-DOPA on conditioned avoidance behavior by inhibition of extracerebral DOPA decarboxylase, Physiol. Behay. 6: 453–458.

    CAS  Google Scholar 

  • Seiden, L. S., Brown, R. M., and Levy, A. J., 1973, Brain catecholamine and conditioned behavior mutual interactions, in: Chemical Modulation of Brain Function ( H. C. Salelli, ed.), Raven Press, New York. pp. 261–275.

    Google Scholar 

  • Sheard, C.. 1945, Effect of anoxia, oxygen and increased intrapulmonary pressure on dark adaptation, Mayo Clin. Proc. 20: 230.

    CAS  Google Scholar 

  • Shelbourne, S. A., Jr., McLaurin, A. N., and McLaurin, R. L., 1976, Effects of graded hypoxia on visual evoked responses of rhesus monkeys, in: Head Injuries ( R. L. McLaurin, ed.), Grune and Stratton, New York, pp. 89–93.

    Google Scholar 

  • Shimada, M., 1981, Glucose uptake in mouse brain regions under hypoxic hypoxia, Neurochem. Res. 6: 993–1003.

    CAS  Google Scholar 

  • Shimada, M., Kihara, T., Kurimoto, K., and Watanabe, M., 1974, Incorporation of ‘4C from [U-14C]glucose into free amino acids under cyanide intoxication, J. Neurochem. 23: 379–384.

    PubMed  CAS  Google Scholar 

  • Shock, N. W., 1942, The effect of learning on repeated exposures to lowered oxygen tension of the inspired air, J. Comp. Physiol. Psycho. 34: 55–63.

    Google Scholar 

  • Sick, T. J., Rosenthal, M., LaManna, J. C., and Lutz, P. L., 1982, Brain potassium ion homeostasis, anoxia. and metabolic inhibition in turtles and rats, Am. Phvsiol. Soc. 243: R281 - R288.

    CAS  Google Scholar 

  • Siesjo, B. K., 1978, Brain energy and catecholaminergic activity in hypoxia. hypercapnia and ischemia, in: Neurotransmitters in Cerebral Coma and Stroke ( K. Jellinger, I. Klatzo. and P. Riederer, eds.), Springer-Verlag, New York, pp. 17–22.

    Google Scholar 

  • Siesjo, B. K., and Ljunggren, B., 1973. Cerebral energy reserves after prolonged hypoxia and ischemia, Arch. Neurol. 29: 400–407.

    PubMed  CAS  Google Scholar 

  • Siesjo, B. K., and Nilsson, L., 1971, The influence of arterial hypoxemia upon labile phosphates and upon extracellular and intracellular lactate and pyruvate concentrations in the rat brain, Scand. J. Clin. Lab. Invest. 27: 83–96.

    CAS  Google Scholar 

  • Siesjo, B. K., Folbergrova, J., and MacMillan, V., 1972, The effect of hypercapnia upon intracellular pH in the brain evaluated by the bicarbonate carbonic acid method and from the creatine phosphokinase equilibrium, J. Neurochem. 19: 2483–2495.

    PubMed  CAS  Google Scholar 

  • Siesjo, B. K., Johannsson, H., Norberg, K., and Salford, L. G., 1975a, Brain function metabolism and blood flow in moderate and severe arterial hypoxia, in: Brain Work Alfred Benzon Symposium VIII, Munksgaard, Kopenhamn, pp. 101–125.

    Google Scholar 

  • Siesjo, B. K., Norberg, K., Ljunggren, B., and Salford, L. G., 1975b, Hypoxia and cerebral metabolism in a basis and practice of a neuroanesthesia, in: Monography in Anaesthesiology, Volume 2 ( E. Gordon, ed.), Excerpta Medica, Amsterdam, pp. 47–82.

    Google Scholar 

  • Silver, I. A., 1973, Local P02 in relation to intracellular pH, cell membrane potential and potassium leakage in hypoxia and shock, Adv. Exp. Biol. Med. 37A: 223–231.

    Google Scholar 

  • Snider, S. R., Brown, R. M., and Carlsson, A., 1974, Changes in biogenic amine synthesis and turnover induced by hypoxia and/or foot shock stress. I. The adrenal medulla, J. Neural Transm. 35: 283–291.

    PubMed  CAS  Google Scholar 

  • Sohmer, H.. Gafni, M., and Chisin, R., 1982, Auditory nerve-brain stem potentials in man and cat under hypoxic and hypercapnic conditions, Electroencephalogr. Clin. Neurophysiol. 53: 506–512.

    CAS  Google Scholar 

  • Sotaniemi, K. A., Sulg, I. A., and Hokkanen, T. E., 1980, Quantitative EEG as a measure of cerebral dysfunction before and after open-heart surgery, Electroencephalogr. Clin. Neurophysiol. 50: 81–95.

    CAS  Google Scholar 

  • Steinsland, O. S., Passo, S. S., and Nahas, G. G., 1970, Biphasic effects of hypoxia on adrenal catecholamine content, Am. J. Physiol. 218: 995–998.

    PubMed  CAS  Google Scholar 

  • Stewart, R. D., Peterson, J. E., Varetta, E. D., Bachand, R. T., Hosko, M. J., and Herrmann, A. A., 1970, Experimental human exposure to carbon monoxide, Arch. Environ. Health 21: 154–164.

    PubMed  CAS  Google Scholar 

  • Strosznajder, J., 1979, The effects of hypoxic-hypoxia on phospholipids in brain subcellular membranes, Int. Soc. Neurochem. 7: 599.

    Google Scholar 

  • Strosznajder, J., 1980, Incorporation of linoleic acid into membrane glycerophospholipids from rat brain submitted to ischemia and hypoxia, Neurochem. Res. 5: 1265–1277.

    CAS  Google Scholar 

  • Strosznajder, J., and Domanska-Janik, K., 1980, Effect of anoxia and hypoxia on brain lipid metabolism, Neurochem. Res. 5: 583–589.

    CAS  Google Scholar 

  • Stupfel, M., and Roffi, J., 1961, Effect of anoxia and different levels of carbon dioxide on the noradrenaline and adrenaline content of rat brain, C. R. Seances Soc. Biol. 155: 237–240.

    CAS  Google Scholar 

  • Sugar, O., and Gerard, R. W., 1938, Anoxia and brain potentials, J. Neurophysiol. 1: 558–572.

    Google Scholar 

  • Sun, G. Y., Manning, R., and Strosznajder, J., 1980, Effects of postdecapitative ischemia and hypoxia on the phosphoglyceride acyl groups of rat brain membranes, Neurochem. Res. 5: 1211–1219.

    PubMed  CAS  Google Scholar 

  • Tauber, B., and Allweis, C., 1975, Effects of acute hypoxia on memory, Isr. J. Med. Sci. 11: 71.

    Google Scholar 

  • Tews, J. K., Carter, S. H., Roa, P. D., and Stone, W. E., 1963, Free amino acids and related compounds in dog brain: Post-mortem and anoxic changes, effects of ammonium chloride infusion, and levels during seizures induced by picrotoxin and by pentylenetetrazol, J. Neurochem. 10: 641–653.

    PubMed  CAS  Google Scholar 

  • Thews, G., 1960, Die sauerstoffdiffusion in gehirn, Pflug. Arch. Eur. J. Physiol. 271: 197.

    CAS  Google Scholar 

  • Thews, G., 1963, Implications to physiology and pathology of oxygen diffusion at the capillary level, in: Selective Vulnerability of the Brain in Hypoxaemia ( J. P. Schade and W. H. McMenemey, eds.), Blackwell Scientific Publications, Oxford, England, pp. 27–35.

    Google Scholar 

  • Traystman, R. J., 1978, Effect of carbon monoxide hypoxia and hypoxic hypoxia on cerebral circulation, in: Multidisciplinary Perspectives in Event-Related Brain Potential Research ( D. A. Otto, ed.), U.S. Government Printing Office, Washington, D.C., pp. 453–457.

    Google Scholar 

  • Traystman, R. J., and Fitzgerald, S. R., 1981, Cerebrovascular response to hypoxia on baroreceptorand chemoreceptor-denervated dogs, Am. Physiol. Soc. 10: H724.

    Google Scholar 

  • Undenfriend, S., 1966, Tyrosine hydroxylase, Pharmacol. Rev. 18: 43–51.

    Google Scholar 

  • Vacher, J., and Miller, A., 1968, Altitude-acclimatization: Its effect on hypoxia-induced performance decrements, Psychopharmacologia 12: 250–257.

    Google Scholar 

  • Van Bogaert, J., Dallemagne, M. J., and Wigria, R., 1938, Recherches sur le besoin d’oxygene chronique et aigu chez Macaca rhesus, Arch. Intern. Med. 13: 335–378.

    Google Scholar 

  • Vollmer, E. P., 1946, The effects of carbon monoxide on three types of performance at simulated altitudes of 10,000 and 15,000 feet, J. Exp. Psychol. 36: 244–251.

    PubMed  CAS  Google Scholar 

  • Watanabe, K., Miyazaki, S., Hara, K., and Hakamade, S., 1980, Behavioral state cycles, background EEGs and prognosis of newborns with perinatal hypoxia, Electroencephalogr. Clin. Neurophysiol. 49: 618–625.

    CAS  Google Scholar 

  • Welsh, J. H., 1943, Acetylcholine levels of rat cerebral cortex under conditions of anoxia and hypoglycemia, J. Neurophysiol. 6: 329–336.

    CAS  Google Scholar 

  • Wilmer, W. H., and Berens, C., Jr., 1918, Medical studies on aviation. V. The effect of altitude on ocular functions, J. Am. Med. Assoc. 71: 1394.

    Google Scholar 

  • Winn, H. R., Rubio, R., and Berne, R. M., 1981, Brain adenosine concentration during hypoxia in rats, Am. J. Physiol. 241: H235 — H242.

    PubMed  CAS  Google Scholar 

  • Wood, J. D., 1967, A possible role of gamma-aminobutyric acid in the homeostatic control of brain metabolism under conditions of brain hypoxia, Exp. Brain Res. 4: 81–84.

    PubMed  CAS  Google Scholar 

  • Wood, J. D., Watson, V. J., and Ducker, A. J., 1968, The effect of hypoxia on brain gamma-aminobutyric acid levels, J. Neurochem. 15: 602–608.

    Google Scholar 

  • Xintaras, C., Johnson, B. 1., Ulrich, C. W., Terrill, R. E., and Sobecki, F., 1966, Application of the evoked response technique in air pollution toxicology, Toxicol. Appl. Pharmacol. 8: 77–87.

    CAS  Google Scholar 

  • Yamamota, C., and Kurokawa, M., 1970, Synaptic potentials recorded in brain slices and their modification by changes in the level of tissue ATP, Exp. Brain Res. 10: 159–170.

    Google Scholar 

  • Yoshino, Y., and Elliot, K. A. C., 1970, Incorporation of carbon atoms from glucose into free amino acids in brain under normal and altered conditions, Can. J. Biochem. 48: 228–235.

    CAS  Google Scholar 

  • Zeuthen, T., Hiam, R. C., and Silver, I. A., 1974, Microelectrode registration of ion activity in brain, Adv. Exp. Med. Biol. 50: 145–146.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Gibson, G.E. (1985). Hypoxia. In: McCandless, D.W. (eds) Cerebral Energy Metabolism and Metabolic Encephalopathy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1209-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1209-3_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1211-6

  • Online ISBN: 978-1-4684-1209-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics