Skip to main content
  • 88 Accesses

Abstract

Nicotinic acid (niacin) has been known for well over a century; however, the biological importance of this acid and its amide (nicotinamide) did not become apparent until the discovery of the pyridine nucleotides, NAD and NADP, and the recognition that this vitamin serves as a precursor of the pyridine nucleotide cofactors. The human disease caused by niacin deficiency is pellagra, a disease that filled insane asylums all over the world before its origin was discovered. The recognition of pellagra as an endemic disease in the United States dates from Searcy’s report in 1907 describing 88 cases of dementia in the Mount Vernon, Alabama, Insane Asylum. In spite of our extensive knowledge about the course of pellagra and our ability to eradicate this disease as a public health problem, there remain great gaps in our understanding of the exact relationship between niacin deficiency and specific pathological lesions in neural tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, D. A., Smith, S. J., and Thompson, S. H., 1980, Ionic currents in molluscan soma, Annu. Rev. Neurosci. 3:141–167.

    CAS  Google Scholar 

  • Axelrod, A. E., Spies, T. D., and Elvehjam, C. A., 1941, The effect of a nicotinic acid deficiency upon the coenzyme I content of the human, J. Biol. Chem. 138:667–676.

    CAS  Google Scholar 

  • Bain, J. A., and Pollock, G. H., 1949, Normal and seizure levels of lactate, pyruvate and acid soluble phosphates in the cerebellum and cerebrum, Proc. Soc. Exp. Biol. Med. N.Y. 71:495–497.

    CAS  Google Scholar 

  • Balazs, R., Machiyama, Y., Hammond, B. J., Julian, T., and Richter, D., 1970, The operation of the gamma-aminobutyrate bypath of the tricarboxylic acid cycle in brain tissue in vitro, Biochem. J. 116:445–467.

    PubMed  CAS  Google Scholar 

  • Bender, D. A., Smith, W. R. D., and Humm, R. P., 1977, Effects of benserazide on tryptophan metabolism in the mouse, Biochem. Pharmacol. 26:1619–1623.

    PubMed  CAS  Google Scholar 

  • Bender, D. A., Earl, C. J., and Lees, A. J., 1979, Niacin depletion in Parkinsonian patients treated with L-dopa, benserazide and carbidopa, Clin. Sci. 56:89–93.

    PubMed  CAS  Google Scholar 

  • Bielicki, L., and Krieglstein, J., 1976, Inhibition of glucose phosphorylation in rat brain by thiopental, Naunyn-Schmied. Arch. Pharmacol. 293:25–29.

    CAS  Google Scholar 

  • Blackwood, W., McMenemey, W. H., Meyer, A., Norman, R. M., and Russell, D. S., 1963, Green-field’s Neuropathology, Arnold, London.

    Google Scholar 

  • Boegman, R. J., and Albuquerque, E. X., 1980, Axonal transport in rats rendered paraplegic following a single subarachnoid injection of either batrachotoxin or 6-amino-nicotinamide into the spinal cord, J. Neurobiol. 11:283–290.

    PubMed  CAS  Google Scholar 

  • Booth, R. F. G., and Clarke, J. B., 1978, The control of pyruvate dehydrogenase in isolated brain mitochondria, J. Neurochem. 30:1003–1008.

    PubMed  CAS  Google Scholar 

  • Brunink, H., and Wessels, E. J., 1972, The determination of nicotinic acid by fluorometric densitometry, Analyst 97:258–259.

    PubMed  CAS  Google Scholar 

  • Brzoska, H.-R., and Adhami, H., 1975, Electron microscopic study of the effect of 6-AN on the sciatic nerve in newborn rats, Acta Neuropathol. 33:59–66.

    PubMed  CAS  Google Scholar 

  • Buell, M. V., Lowry, O. H., Roberts, N. R., Chang, M-L. W., and Kapphahn, J. I., 1958, The quantitative histochemistry of the brain. V. Enzymes of glucose metabolism, J. Biol. Chem. 232:979–993.

    PubMed  CAS  Google Scholar 

  • Burch, H. B., Lowry, O. H., Padilla, A. M., and Combs, A. M., 1956, Effects of riboflavin deficiency and realimentation on flavin enzymes of tissues, J. Biol. Chem. 233:29–45.

    Google Scholar 

  • Carpenter, K. I., 1981, Effects of different methods of processing maize on its pellagragenic activity, Fed. Proc. 40:1531–1535.

    PubMed  CAS  Google Scholar 

  • Chamberlain, J. G., 1972, 6-Aminonicotinamide (6-AN)-induced abnormalities of the developing ependyma and choroid plexus as seen with the scanning electron microscope, Teratology 6:281–286.

    PubMed  CAS  Google Scholar 

  • Chamberlain, J. G., and Nelson, M. M., 1963, Multiple congenital abnormalities in the rat resulting from acute maternal niacin deficiency during pregnancy, Proc. Soc. Exp. Biol. Med. 112:836–840.

    PubMed  CAS  Google Scholar 

  • Chui, E., and Garcia, H. J., 1979, Pathogenesis of 6-aminonicotinamide Neurotoxicity: New structural analysis, in: Progress in Neuropathology, Volume 4 (H. M. Zimmerman, ed.), Raven Press, New York, pp. 341–359.

    Google Scholar 

  • Clark, B. R., Halpern, R. M., and Smith, R. A., 1975, A fluorimetric method for quantitation in the picomole range of N1-methylnicotinamide and nicotinamide in serum, Anal. Biochem. 68:54–61

    PubMed  CAS  Google Scholar 

  • Coggeshall, R. E., and MacLean, P. D., 1958, Hippocampal lesions following administration of 3acetylpyridine, Proc. Soc. Exp. Biol. Med. 98:687–689.

    PubMed  CAS  Google Scholar 

  • Coper, H., Hadass, H., and Lison, H., 1966, Untersuchungen zum Mechanismus zentralnervöser Funktionsstörungen durch 6-Aminonicotinamid, Naunyn-Schmied. Arch. Pharmakol. Exp. Pathol. 255:96–106.

    Google Scholar 

  • D’Adamo, A. F., Jr., and Haft, D. E., 1965, An alternate pathway of alpha-ketoglutarate catabolism in the isolated, perfused rat liver. I. Studies with DL-glutamate-2- and -5-14C, J. Biol. Chem. 240:613–617.

    Google Scholar 

  • Deguchi, T., Ichiyama, A., Nishizuka, Y., and Hayaishi, O., 1968, Studies on the biosynthesis of nicotinamide adenine dinucleotide in the brain, Biochim. Biophys. Acta 158:382–393.

    PubMed  CAS  Google Scholar 

  • Denson, R., 1962, Nicotinamide in the treatment of schizophrenia, Dis. Nerv. Syst. 23:162–172.

    Google Scholar 

  • Desclin, J. C., and Escubi, J., 1974, Effects of 3-acetylpyrine on the central nervous system of the rat, as demonstrated by silver methods, Brain Res. 77:349–364.

    PubMed  CAS  Google Scholar 

  • Deshpande, S. S., Albuquerque, E. X., Kauffman, F. C., and Guth, L., 1978, Physiological, biochemical and histological changes in skeletal muscle, neuromuscular junction and spinal cord of rats rendered paraplegic by subarachnoidal administration of 6-aminonicotinamide, Brain Res. 140:89–109.

    PubMed  CAS  Google Scholar 

  • Dickens, F., and Glock, G. E., 1951, Direct oxidation of glucose-6-phosphate, 6-phosphogluconate and pentose-5-phosphates by enzymes of animal origin, Biochem. J. 50:81–95.

    PubMed  CAS  Google Scholar 

  • Edström, J.-E., and Grampp, W., 1965, Nervous activity and metabolism of ribonucleic acids in the crustacean stretch receptor neuron, J. Neurochem. 12:735–741.

    PubMed  Google Scholar 

  • Frieda, R. L., and Bischhausen, R., 1978, How do axons control myelin formation? The model of 6-aminonicotinamide neuropathy, J. Neurol. Sci. 35:341–353.

    Google Scholar 

  • Gal, E. M., 1974, Cerebral tryptophan-2,3-dioxygenase (pyrrolase) and its induction in rat brain, J. Neurochem. 22:861–863.

    PubMed  CAS  Google Scholar 

  • Gallent, M., Bishop, M., and Steele, G., 1966, DPN (NAD oxidized form): A preliminary evaluation in chronic schizophrenic patients, Ann. Ther. Residency 8:542.

    Google Scholar 

  • Garcia-Bunuel, L., McDougal, D. B., Jr., Burch, H. B., Jones, E. M., and Touhill, E., 1962, Oxidized and reduced pyridine nucleotide levels and enzyme activities in brain and liver of niacin deficient rats, J. Neurochem. 9:589–594.

    PubMed  CAS  Google Scholar 

  • Genazzani, E., and Di Carlo, R., 1974, Interference of neurologically active drugs with metabolism of RNA in brain, in: Central Nervous System. Studies on Metabolic Regulation and Function (E. Genazzani and H. Herken, eds.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 217–222.

    Google Scholar 

  • Gerber, G. B., and Deroo, J., 1970, Metabolism of labelled nicotinamide coenzyme in different organs of mice and rats. Proc. Soc. Exp. Biol. Med. 134:689–693.

    PubMed  CAS  Google Scholar 

  • Gibson, G. E., Glantz, S., Duffy, T. E., and Blass, J. P., 1983, Regional brain glucose utilization and behavior during niacin deficiency, Trans. Am. Soc. Neurochem. 14:121.

    Google Scholar 

  • Glock, G. E., and McLean, P., 1954, Levels of enzymes of the direct oxidative pathway of carbohydrate metabolism in mammalian tissues and tumours, Biochem. J. 56:171–175.

    PubMed  CAS  Google Scholar 

  • Goldsmith, G. A., 1958, Niacin-tryptophan relationships in man and niacin requirement, Am. J. Clin. Nutr. 6:479–486.

    PubMed  CAS  Google Scholar 

  • Grant, W. M., 1980, The peripheral visual system as a target, in: Experimental and Clinical Neurotoxicology (P. S. Spencer and H. H. Schaumburg, eds.), Williams and Wilkins, Baltimore, pp. 77–91.

    Google Scholar 

  • Gregory, I., 1955, The role of nicotinic acid (niacin) in mental health and disease, J. Ment. Sci. 101:85–109.

    PubMed  CAS  Google Scholar 

  • Griffiths, I. R., Kelly, P. A. T., and Grome, J. J., 1981, Glucose utilization in the central nervous system in the acute gliopathy due to 6-aminonicotinamide, Lab. Invest. 44:547–552.

    PubMed  CAS  Google Scholar 

  • Härkönen, M. A., and Kauffman, F. C., 1974, Metabolic alterations in the axotomized superior cervical ganglion of the rat. II. The pentose phosphate pathway, Brain Res. 65:141–157.

    PubMed  Google Scholar 

  • Heald, P. J., 1956, Effects of electrical pulses on the distribution of radioactive phosphate in cerebral tissues, Biochem. J. 63:242–249.

    PubMed  CAS  Google Scholar 

  • Herken, H., 1970, Antimetabolic action of 6-aminonicotinamide on the pentose phosphate pathway in the brain, in: A Symposium on Mechanisms of Toxicity (W. N. Aldridge, ed.), MacMillan and Co., London, pp. 189–203.

    Google Scholar 

  • Herken, H., Lange, K., and Kolbe, H., 1969, Brain disorders induced by pharmacological blockade of the pentose phosphate pathway, Biochem. Biophys. Res. Commun. 36:93–100.

    PubMed  CAS  Google Scholar 

  • Herken, H., Lange, K., Kolbe, H., and Keller, K., 1974, Antimetabolic action on the pentose phosphate pathway in the central nervous system induced by 6-aminonicotinamide, in: Central Nervous System. Studies on Metabolic Regulation and Function (E. Genazzani and H. Herkin, eds.), Springer-Verlag, Berlin, Heidelberg, New York, pp. 41–54.

    Google Scholar 

  • Herken, H., Meyer-Estorf, G., HalbhĂĽbner, K., and Loos, D., 1976, Spastic paresis after 6-aminonicotinamide: Metabolic disorders in the spinal cord and electromyographically recorded changes in the hind limbs of rats, Naunyn-Schmied. Arch. Pharmacol. 293:245–255.

    CAS  Google Scholar 

  • Hermann, A., and Gorman, A. L. F., 1981, Effects of 4-aminopyridine on potassium currents in a molluscan neuron, J. Gen. Physiol. 78:63–86.

    PubMed  CAS  Google Scholar 

  • Hersov, L. A., 1955, A case of childhood pellagra with psychosis, J. Ment. Sci. 101:878–883.

    PubMed  CAS  Google Scholar 

  • Hicks, S. P., 1955, Pathological effects of antimetabolites. I. Acute lesions in the hypothalamus, peripheral ganglia, and adrenal medulla caused by 3-acetylpyridine and prevented by nico- tinamide, Am. J. Pathol. 31:189–199.

    PubMed  CAS  Google Scholar 

  • Himwich, H. E., 1951, Brain Metabolism and Cerebral Disorders, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Hoffer, A., 1962, Niacin Therapy in Psychiatry, Charles C. Thomas, Springfield, Illinois.

    Google Scholar 

  • Hoffer, A., 1966, The effect of nicotinic acid on the frequency and duration of rehospitalization of schizophrenic patients, a controlled comparison study, Int. J. Neuropsychiatry 2:234–240.

    PubMed  CAS  Google Scholar 

  • Horita, N., Ishii, T., and Izumiyama, Y., 1981, Ultrastructure of 6-aminonicotinamide (6-AN)-induced lesions in the central nervous system of rats. III. Alterations of the spinal gray matter lesion with aging, Acta Neuropathol. 53:227–235.

    PubMed  CAS  Google Scholar 

  • Hothersall, J. S., Baguer, N. Z., Greenbaum, A. L., and McLean, P., 1979, Alternative pathways of glucose utilization in brain. Changes in the pattern of glucose utilization in brain during development and the effect of phenazine methosulfate on the integration of metabolic routes, Arch. Biochem. Biophys. 198:478–492.

    PubMed  CAS  Google Scholar 

  • Hothersall, J. S., Zubairu, S., McLean, P., and Greenbaum, A. L., 1981, Alternative pathways of glucose utilization in brain; Changes in the pattern of glucose utilization in brain resulting from treatment of rats with 6-aminonicotinamide, J. Neurochem. 37:1484–1496.

    PubMed  CAS  Google Scholar 

  • HydĂ©n, H., and Egyhazi, E., 1968, The effect of tranylcypromine on synthesis of macromolecules and enzyme activities in neurons and glia, Neurology 18:732–736.

    PubMed  Google Scholar 

  • Ikeda, M., Tsuji, H., Nakamura, S., Ichiyama, A., Nishizuka, Y., and Hayaishi, O., 1965, Studies on the biosynthesis of nicotinamide adenine dinucleotide. II. A role of picolinic carboxylase in the biosynthesis of nicotinamide adenine dinucleotide from tryptophan in mammals, J. Biol. Chem. 240:1395–1401.

    PubMed  CAS  Google Scholar 

  • Jacobs, J. M., Miller, R. H., Whittle, A., and Cavanagh, J. B., 1979, Studies on the early changes in acute isoniazid neuropathy in the rat, Acta Neuropathol. 47:85–92.

    PubMed  CAS  Google Scholar 

  • Jepson, J. B., 1972, Hartnup disease, in: The Metabolic Basis of Inherited Disease, 3rd ed. (J. B. Stanbury, J. B. Wyngaarden, and D. S. Fredrickson, eds.), McGraw Hill, New York, pp. 1486–1503.

    Google Scholar 

  • Johnson, W. J., and McColl, J. D., 1955, 6-Aminonicotinamide, a potent nicotinamide antagonist, Science 122:834.

    PubMed  CAS  Google Scholar 

  • Kahana, S. E., Lowry, O. H., Schulz, D. W., Passonneau, J. V., and Crawford, E. J., 1960, The kinetics of phosphoglucoisomerase, J. Biol. Chem. 235:2178–2184.

    PubMed  CAS  Google Scholar 

  • Kaplan, N. O., 1960, in: Neurochemistry of Nucleotides and Amino Acids (R. O. Brady and D. B. Tower, eds.), Wiley, New York, p. 70.

    Google Scholar 

  • Kaplan, N. O., Goldin, A., Humphreys, S. R., Ciotti, M. M., and Stolzenbach, F. E., 1956, Pyridine nucleotide synthesis in the mouse, J. Biol. Chem. 219:287–298.

    PubMed  CAS  Google Scholar 

  • Kauffman, F. C., 1972, The quantitative histochemistry of enzymes of the pentose phosphate pathway in the central nervous system of the rat, J. Neurochem. 19:1–9.

    PubMed  CAS  Google Scholar 

  • Kauffman, F. C., and Johnson, E. C., 1974, Cerebral energy reserves and glycolysis in neural tissue of 6-aminonicotinamide-treated mice, J. Neurobiol. 5:379–392.

    PubMed  CAS  Google Scholar 

  • Keller, K., Kolbe, H., Herken, H., and Lange, K., 1976, Glycolysis and glycogen metabolism after inhibition of hexose monophosphate pathway in C6-glial cells, Naunyn-Schmied. Arch. Pharmacol. 294:213–215.

    CAS  Google Scholar 

  • Kline, N. S., Barclay, G. L., Cole, J. O., Esser, A. H., Lehmann, H., and Wittenborn, J. R., 1967, Diphosphopyridine nucleotide (DPN) in the treatment of schizophrenia, J. Am. Med. Assoc. 200:881–882.

    CAS  Google Scholar 

  • Knoll-Köhler, E., Wojnorowicz, F., and Sarkander, H.-J., 1980, Correlated changes in neuronal cerebral rat brain RNA synthesis and hypo-and hypermotoric disorders induced by 6-aminonicotinamide (6-AN), Exp. Brain Res. 38:173–179.

    PubMed  Google Scholar 

  • Kodicek, E., Braude, R., Kon, S. K., and Mitchell, K. G., 1959, The availability to pigs of nicotinic acid in tortilla baked from maize treated with lime-water, Br. J. Nutr. 13:363–384.

    PubMed  CAS  Google Scholar 

  • Köhler, E., Barrach, H-J., and Neubert, D., 1970, Inhibition of NADP dependent oxidoreductases by the 6-aminonicotinamide analogue of NADP, Febs Lett. 6:225–228.

    PubMed  Google Scholar 

  • Krehl, W. A., 1981, Discovery of the effect of tryptophan on niacin deficiency, Fed. Proc. 40:1527–1530.

    PubMed  CAS  Google Scholar 

  • Krehl, W. A., Teply, L. J., and Elvehjem, C. A., 1945, Corn as an etiological factor in the production of nicotinic acid deficiency in the rat, Science 101:283.

    PubMed  CAS  Google Scholar 

  • Krieglstein, J., and Stock, R., 1975, Decreased glycolytic flux rate in the isolated perfused rat brain after pretreatment with 6-aminonicotinamide, Naunyn-Schmied. Arch. Pharmacol. 290:323–327.

    CAS  Google Scholar 

  • Kuhlman, R. E., and Lowry, O. H., 1956, Quantitative histochemical changes during the development of the rat cerebral cortex, J. Neurochem. 1:173–180.

    PubMed  CAS  Google Scholar 

  • Laatsch, R. H., 1962, Glycerol phosphate dehydrogenase activity of developing rat central nervous system, J. Neurochem. 9:487–492.

    PubMed  CAS  Google Scholar 

  • Laguna, J., and Carpenter, K. J., 1951, Raw versus processed corn in niacin-deficient diets, J. Nutr. 45:21–28.

    PubMed  CAS  Google Scholar 

  • Lajtha, A. L., Maker, H. S., and Clarke, D. D., 1981, Metabolism and transport of carbohydrates and amino acids, in: Basic Neurology (G. J. Siegel, R. W. Albers, B. W. Agranoff, and R. Katzman, eds.), Little, Brown, and Co., Boston, pp. 329–354.

    Google Scholar 

  • Lange, K., Kolbe, H., Keller, K., and Herken, H., 1970, Der Kohlenhydratstoffwechsel des Gehirns nach Blockade des Pentose-Phosphat-Weges durch 6-Aminonicotinsäureamid, Hoppe-Seyler’s Z. Physiol. Chem. 351:1241–1252.

    PubMed  CAS  Google Scholar 

  • Lapin, I. P., 1978, Stimulant and convulsive effects of kynurenines injected into brain ventricules in mice, J. Neural Transm. 42:37–43.

    PubMed  CAS  Google Scholar 

  • LlinĂ s, R., Walton, K., and Bohr, V., 1976, Synaptic transmission in squid giant synapse after potassium conductance blockage with external 3- and 4-aminopyridine, Biophys. J. 16:83–86.

    PubMed  Google Scholar 

  • Lowry, O. H., and Passonneau, J. V., 1964, The relationships between substrates and enzymes of glycolysis in brain, J. Biol. Chem. 239:31–42.

    PubMed  CAS  Google Scholar 

  • Luine, V. N., and Kauffman, F. C., 1971, Triphosphopyridine nucleotide-dependent enzymes in the developing spinal cord of the rabbit, J. Neurochem. 18:1113–1124.

    PubMed  CAS  Google Scholar 

  • Madsen, J., Abraham, S., and Chaikoff, I. L., 1964, The conversion of glutamate carbon to fatty acid carbon via citrate. I. The influence of glucose in lactating rat mammary gland slices, J. Biol. Chem. 239:1305–1309.

    PubMed  CAS  Google Scholar 

  • McCandless, D. W., and Scott, W. J., 1981, The effect of 6-aminonicotinamide on energy metabolism in rat embryo neural tube, Teratology 23:391–395.

    PubMed  CAS  Google Scholar 

  • McDougal, D. B., Jr., Schultz, D. W., Passonneau, J. V., Clark, J. R., Reynolds, M. A., and Lowry, O. H., 1961, Quantitative studies of white matter. I. Enzymes involved in glucose-6-phosphate metabolism, J. Gen. Physiol. 44:487–498.

    PubMed  CAS  Google Scholar 

  • Mcllwain, H., 1966, Biochemistry and the Central Nervous System, 3rd ed., J. and A. Churchill, London, pp. 176–181.

    Google Scholar 

  • Mcllwain, H., and Rodnight, R., 1949, Breakdown of cozymase by a system from nervous tissue, Biochem. J. 44:470–477.

    Google Scholar 

  • Meyer-Estorf, G., Schulze, P. E., and Herken, H., 1973, Distribution of 3H-labelled 6-aminonicotinamide and accumulation of 6-phosphogluconate in the spinal cord, Naunyn-Schmied. Arch. Pharmacol. 276:235–241.

    CAS  Google Scholar 

  • Meyer-König, E., 1973, Ultrastruktur der Glia-und Axonschädigung durch 6-Aminonicotinamid (6-AN) am Sehnery der Ratte, Acta Neuropathol. 26:115–126.

    PubMed  Google Scholar 

  • Mosher, L. R., 1970, Nicotinic acid side effects and toxicity: A review, Am. J. Psychiatry 126:1290–1296.

    PubMed  CAS  Google Scholar 

  • Nakamura, S., Ikeda, M., Tsuji, H., Nishizuka, Y., and Hayaishi, O., 1963, Quinolinate transphosphoribosylase: A mechanism of niacin ribonucleotide formation from quinolinic acid, Biochem. biophys. Res. Commun. 13:285–290.

    CAS  Google Scholar 

  • Nemeth, A. M., and Dickerman, H., 1960, Pyridine nucleotides and diphosphopyridine nucleotidase in developing mammalian tissues, J. Biol. Chem. 235:1761–1764.

    PubMed  CAS  Google Scholar 

  • Nisslbaum, J. S., Packer, D. E., and Bodansky, O., 1964, Comparison of the actions of human brain, liver, and heart lactic dehydrogenase variants on nucleotide analogues and on substrate analogues in the absence and in the presence of oxalate and oxamate, J. Biol. Chem. 239:2830–2834.

    Google Scholar 

  • Osmond, H., and Hoffer, A., 1962, Massive niacin treatment of schizophrenia: Review of a nine year study, Lancet 1:316–319.

    PubMed  CAS  Google Scholar 

  • Perkins, M. N., and Stone, T. W., 1983, Quinolinic acid: Regional variations in neuronal sensitivity, Brain Res. 259:172–176.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, C. C., 1981, Extranutrients and mental illness, Biol. Psychiatry 16:797–799.

    PubMed  CAS  Google Scholar 

  • Plaitakis, A., Nicklas, W. J., and Desnick, R. J., 1980, Glutamate dehydrogenase deficiency in three patients with spinocerebellar syndrome, Ann. Neurol. 7:297–303.

    PubMed  CAS  Google Scholar 

  • Prakash, M. R., and Baguer, N. Z., 1981, Inhibition of gamma-aminobutyric acid transaminase with 6-aminonicotinamide in regions of the rat brain, Biochem. Pharmacol. 30:663–664.

    PubMed  CAS  Google Scholar 

  • Samson, F. E., Jr., and Dahl, N. A., 1957, Cerebral energy requirement of neonatal rats, Am. J. Physiol. 188:277–280.

    PubMed  CAS  Google Scholar 

  • Sarkander, H.-I., Knoll-Köhler, E., and Cervos-Navarro, J., 1978, Repression of glial RNA transcription during the development of 6-aminonicotinamide (6-AN)-induced acute gliopathy, J. Pharmacol. Exp. Ther. 205:503–514.

    PubMed  CAS  Google Scholar 

  • Schneider, H., and Cervos-Navarro, J., 1974, Acute gliopathy in spinal cord and brain stem induced by 6-aminonicotinamide, Acta Neuropathol. 27:11–23.

    PubMed  CAS  Google Scholar 

  • Schwartz, R., Whetsell, W. O., Jr., and Mangano, R. M., 1983, Quinolinic acid: An endogenous metabolite that produces axon-sparing lesions in rat brain, Science 219:316–318.

    Google Scholar 

  • Searcy, G. H., 1907, An epidemic of acute pellagra, J. Am. Med. Assoc. 49:37.

    Google Scholar 

  • Singal, S. A., Sydenstricker, V. P., and Littlejohn, J. M., 1948, The nicotinic acid content of tissues of rats on corn rations, J. Biol. Chem. 176:1069–1073.

    PubMed  CAS  Google Scholar 

  • Spector, R., 1979, Niacin and niacinamide transport in the central nervous system. In vivo studies, J. Neurochem. 33:895–904.

    PubMed  CAS  Google Scholar 

  • Spector, R., and Huntoon, S., 1981, No effect of maternal niacin deficiency on niacin metabolism in newborn brain, Neurochem. Res. 6:475–483.

    PubMed  CAS  Google Scholar 

  • Spector, R., and Kelly, P., 1979, Niacin and niacinamide accumulation by rabbit brain slices and choroid plexus in vitro, J. Neurochem. 33:291–298.

    PubMed  CAS  Google Scholar 

  • Spector, R., and Lorenzo, A. V., 1975, Myo-inosital transport in the central nervous system, Am. J. Physiol. 228:1510–1518.

    PubMed  CAS  Google Scholar 

  • Sternberg, S. S., and Philips, F. S., 1958, 6-Aminonicotinamide and acute degenerative changes in the central nervous system, Science 127:644–646.

    PubMed  CAS  Google Scholar 

  • Stone, T. W., and Perkins, M. N., 1981, Quinolinic acid: A potent endogenous excitant at amino acid receptors in central nervous system, Eur. J. Pharmacol. 72:411–412.

    PubMed  CAS  Google Scholar 

  • Unna, K., 1939, Studies on the toxicity and pharmacology of nicotinic acid, J. Pharmacol. Exp. Ther. 65:95–103.

    CAS  Google Scholar 

  • Utter, M. F., 1950, Mechanism of inhibition of anaerobic glycolysis of brain by sodium ions, J. Biol. Chem. 185:499–517.

    PubMed  CAS  Google Scholar 

  • Weil-Malherbe, H., and Bone, A. D., 1951, Studies on hexokinase. I. The hexokinase activity of rat brain extracts, Biochem. J. 49:339–347.

    PubMed  CAS  Google Scholar 

  • Willing, F., Neuhoff, V., and Herken, H., 1964, Der Austausch von 3-Acetylpyridin gegen Nicotinsäureamid in den Pyridinnucleotiden verschiedener Hirnregionen, Naunyn-Schmied. Arch. Pharmacol. 247:254–266.

    CAS  Google Scholar 

  • Windmueller, H. G., and Kaplan, N. O., 1962, Solubilization and purification of diphosphopyridine nucleotidase from pig brain, Biochim. Biophys. Acta 56:388–391.

    PubMed  CAS  Google Scholar 

  • Winer, A. D., 1960, Fluorescent studies of ox-brain lactic and malic dehydrogenase, Biochem. J. 76:5p-6p.

    Google Scholar 

  • Wolf, A., and Cowen, D., 1959, Pathological changes in the central nervous system produced by 6-aminonicotinamide, Bull. N.Y. Acad. Med. 35:814–817.

    PubMed  CAS  Google Scholar 

  • Woolley, D. W., 1952, A Study of Antimetabolites, Chapman and Hall, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Plenum Press, New York

About this chapter

Cite this chapter

Kauffman, F.C. (1985). Niacin-Nicotinamide Deficiency. In: McCandless, D.W. (eds) Cerebral Energy Metabolism and Metabolic Encephalopathy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1209-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1209-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1211-6

  • Online ISBN: 978-1-4684-1209-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics