Recent Advances in Structural Analysis of Gangliosides: Primary and Secondary Structures

  • Robert K. Yu
  • Theodore A. W. KoernerJr.
  • Peter C. Demou
  • J. Neel Scarsdale
  • James H. Prestegard
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


The growing interest in the biological function of cell surface glycosphingolipids (GSLs) has stimulated the constant search for new methods for analyzing their primary and secondary structures. To determine the primary structure of the oligosaccharide moiety of a GSL, it is necessary to establish the composition and configuration of its sugar residues, and the sequence and linkage sites of the oligosaccharide chain. This information has traditionally been obtained by application of a combination of such procedures as compositional analysis by gas-liquid chromatography, mass spectrometry, permethylation studies, Smith degradation, partial acid or enzyme hydrolysis, optical rotation measurements, etc. However, these techniques are relatively time-consuming, frequently require elaborate derivatization of the intact molecules, and access to many different instruments. Furthermore, these procedures do not afford secondary structural information (conformation) which is important in determining the biological activities of these compounds. Although x-ray crystallography has been used to provide accurate information about the conformation of a carbohydrate by measurement of bond lengths, bond angles, and interatomic distances, it is not certain whether the conformation that exists in a crystalline state is the one that is preferred in solution.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Spectroscopy Proton Nuclear Magnetic Resonance Anomeric Proton Nuclear Overhauser Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kawanami and T. Tsuji, Structure of the oligosaccharide from mammalian glycolipids, Chem. Phys. Lipids 7:49 (1971).PubMedCrossRefGoogle Scholar
  2. 2.
    S. Handa, T. Ariga, T. Miyatuke, and T. Yamakawa, Presence of α-anomeric glycosidic configuration in the glycolipids accumulated in kidney with Fabry’s disease, J. Biochem. 69:625 (1971).PubMedGoogle Scholar
  3. 3.
    S. Ando, M. Ron, M. Isobe, Y. Nagai, and T. Yamakawa, Existence of glucosaminyl lactosyl ceramide (amino CTH-I) in human erythrocyte membranes as a possible precursor of blood group-active glycolipid, J. Biochem. 79:625 (1976).PubMedGoogle Scholar
  4. 4.
    P. L. Harris and E. R. Thornton, Carbon-13 and proton nuclear magnetic resonance studies of gangliosides, J. Amer. Chem. Soc. 100:6738 (1980).CrossRefGoogle Scholar
  5. 5.
    K.-E. Falk, K.-A. Karlsson, and B. E. Samuelsson, Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids: the globo-series (one to five sugars), Arch. Biochem. Biophys. 192:164 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    K.-E. Falk, K.-A. Karlsson, and B. E. Samuelsson, Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids: blood group ABH-active substance, Arch. Biochem. Biophys. 192:177 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    K.-E. Falk, K.-A. Karlsson, and B. E. Samuelsson, Proton nuclear magnetic resonance analysis of anomeric structure of glycosphingolipids: Lewis-active and Lewis-like substance, Arch. Biochem. Biophys. 192:191 (1979).PubMedCrossRefGoogle Scholar
  8. 8.
    J. F. G. Vliegenthart, High resolution 1H-NMR spectroscopy of carbohydrate structure, Adv. Exp. Med. Biol. 125:77 (1980).PubMedGoogle Scholar
  9. 9.
    S. Gasa, T. Mitsuyama, and A. Makita, Proton nuclear magnetic resonance of neutral and acidic glycosphingolipids, J. Lipid Res. 24:174 (1983).PubMedGoogle Scholar
  10. 10.
    J. Dabrowski, H. Egge, and P. Hanfland, High resolution nuclear magnetic resonance spectroscopy of glycosphingolipids. I. 360 MHz 1H and 90.5 MHz 13C NMR analysis of galactosylceramide, Chem. Phys. Lipids 26:187 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    J. Dabrowski, P. Hanfland, and H. Egge, Structural analysis of glycosphingolipids by high-resolution 1H nuclear magnetic resonance spectroscopy, Biochemistry 19:5652 (1980).PubMedCrossRefGoogle Scholar
  12. 12.
    P. Hanfland, H. Egge, U. Dabrowski, S. Kulin, D. Roelcke, and J. Dabrowski, Isolation and characterization of an I-active ceramide decasaccharide from rabbit erythrocyte membrane, Biochemistry 20:5310 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Dabrowski, P. Hanfland, H. Egge, and U. Dabrowski, Immunochemistry of the Lewis-blood-group system: proton nuclear magnetic resonance study of plasmatic Lewis-blood-group-active glycosphingolipids and related substances, Arch. Biochem. Biophys. 210:405 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    J. Dabrowski and P. Hanfland, Structure determination of a ceramide pentadecasaccharide by two-dimensional J-resolved and J-correlated NMR spectroscopy, FEBS Lett. 142:138 (1982).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Dabrowski, P. Hanfland, and H. Egge, Analysis of glycosphingolipids by high-resolution proton nuclear magnetic resonance spectroscopy, Methods Enz. 83:69 (1982).CrossRefGoogle Scholar
  16. 16.
    A. Yamada, J. Dabrowski, P. Hanfland, and H. Egge, Preliminary results of J-resolved, two-dimensional 1H-NMR studies on glycosphingolipids, Biochim. Biophys. Acta 618:473 (1980).PubMedGoogle Scholar
  17. 17.
    W. P. Aue, E. Bartholdi, and R. R. Ernst, Two-dimensional spectrscopy. Application to nuclear magnetic resonance, J. Chem. Phys. 64:2229 (1976).CrossRefGoogle Scholar
  18. 18.
    K. Nagayama, A. Kumar, K. Wuthrich, and R. R. Ernst, Two-dimensional spin-echo correlated spectroscopy (SECSY) for 1H NMR studies of biological molecules, J. Mag. Res. 40:321 (1980).Google Scholar
  19. 19.
    J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst, Investigation of exchange processes by two-dimensional NMR spectroscopy, J. Chem. Phys. 71:4546 (1979).CrossRefGoogle Scholar
  20. 20.
    A. Kumar, R. R. Ernst, and K. Wuthrich, A two-dimensional nuclear Overhauser enhancement (2D NOE) experiment for the elucidation of complete proton-proton cross-relaxation networks in biological macromolecules, Biochem. Biophys. Res. Commun. 95:1 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    J. H., Prestegard, T. A. W. Koerner, P. C. Demou, and R. K. Yu, Complete analysis of oligosaccharide primary structure using two-dimensional high field proton NMR, J. Amer. Chem. Soc. 104:4993 (1982).CrossRefGoogle Scholar
  22. 22.
    M. A. Bernstein and L. D. Hall, De novo sequencing of oligosaccharides by proton NMR spectroscopy, J. Am. Chem. Soc. 104:5553 (1982).CrossRefGoogle Scholar
  23. 23.
    M. A. Bernstein, L. D. Hall, and S. Sukumar, Assignment of proton n.m.r. spectra of carbohydrates, using two-dimensional techniques: COSY and SECSY, Carbohydrate Res. 103:C1 (1982).CrossRefGoogle Scholar
  24. 24.
    T. A. W. Koerner, J. H. Prestegard, and R. K. Yu, Analysis of ganglioside structure via high resolution proton NMR spectroscopy, Fed. Proc. 41:1170 (1982).Google Scholar
  25. 25.
    T. A. W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu, High-resolution proton NMR studies of gangliosides. 1. Use of homonuclear two-dimensional spin-echo J-correlated spectroscopy for determination of residue composition and anomeric configurations, Biochemistry 22:2676 (1983).PubMedCrossRefGoogle Scholar
  26. 26.
    T. A. W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu, High-resolution proton NMR studies of gangliosides. 2. Use of two-dimensional nuclear Overhauser effect spectroscopy and sialylation shifts for determination of oligosaccharide sequence and linkage sites, Biochemistry 22:2687 (1983).PubMedCrossRefGoogle Scholar
  27. 27.
    L. D. Hall, High-resolution nuclear magnetic resonance spectroscopy, in: The Carbohydrates, Chemistry and Biochemistry (W. Pigman, D. Horton, and J.D. Wander, eds.) Vol. IB, pp. 1299–1326, Academic Press, N.Y.Google Scholar
  28. 28.
    C. Altona and C. A. G. Haasnoot, Prediction of anti and gauche vicinal proton-proton coupling constants in carbohydrates: a simple additivity rule for pyranose rings, Org. Mag. Resonance 13:417 (1980).CrossRefGoogle Scholar
  29. 29.
    A. Makita and T. Yamakawa, The glycolipids of the brain of Tay-Sachs’ disease — the chemical structure of a globoside and main ganglioside, Japan J. Exp. Med. 33:361 (1963).Google Scholar
  30. 30.
    R. Ledeen and K. Salsman, Structure of the Tay-Sachs’ ganglioside. I., Biochemistry 4:2225 (1965).CrossRefGoogle Scholar
  31. 31.
    H. A. Nunez and R. Barker, Enzymatic synthesis and carbon-13 nuclear magnetic resonance conformational studies of disaccharides containing β-D-galactopyranosyl and β-D-[1-13C]galactopyranosyl residue, Biochemistry 19:489 (1980).PubMedCrossRefGoogle Scholar
  32. 32.
    M. L. Hayes, A. S. Serianni, and R. Barker, Methyl β-lactoside: 600-MHz 1H and 75-MHz 13C-N.M.R. Studies of 2H-and 13C-enriched compounds, Carbohydrate Res. 100:87 (1982).CrossRefGoogle Scholar
  33. 33.
    P. R. Rosevear, H. A. Nunez, and R. Barker, Synthesis and solution conformation of the type 2 blood group oligosaccharide αL Fuc (1 → 2)βDGal(1 → 4) βDGlcNAc, Biochemistry 21:1421 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    R. Barker, H. A. Nunez, P. R. Rosevear, and A. S. Serianni, 13C NMR analysis of complex carbohydrates, Methods Enzvmol. 83:58 (1982).CrossRefGoogle Scholar
  35. 35.
    R. U. Lemieux, K. Bock, L. T. J. Delbaere, S. Koto, and V. S. Rao, The conformations of oligosaccharides related to the ABH and Lewis human blood group determinants, Can. J. Chem. 58:631 (1980).CrossRefGoogle Scholar
  36. 36.
    K. Bock and R. U. Lemieux, The conformational properties of sucrose in aqueous solution: Intramolecular hydrogen bonding, Carbohydrate Res. 100:63 (1982).CrossRefGoogle Scholar
  37. 37.
    A. A. Bothner By and J. H. Noggle, Time development of nuclear Overhauser effects in multispin systems, J. Am. Chem. Soc. 101:5152 (1979).CrossRefGoogle Scholar
  38. 38.
    T. A. W. Koerner, J. H. Prestegard, and R. K. Yu, Determination of the sequence and trans-glycosidic interprotonic distances of globoside using two-dimensional nuclear Overhauser effect proton NMR spectroscopy, Biochem. Biophys. Res. Commun. (submitted).Google Scholar
  39. 39.
    R. Richarz and K. Wuthrich, NOE difference spectroscopy: A novel method for observing individual multiplets in proton NMR spectra of biological macromolecules, J. Magn. Reson. 30:147 (1978).Google Scholar
  40. 40.
    J. H. Noggle and R. E. Shirmer, The nuclear Overhauser effect, Academic Press, N.Y.Google Scholar
  41. 41.
    F. Longchambon, J. Ohannessian, D. Avenel, and A. Neuman, Structure cristalline due β-D-galactose et de 1′α-L-fucose, Acta Crystallog. 31B:2623 (1975).Google Scholar
  42. 42.
    B. Sheldrick, The crystal structures of the α-and β-anomers of D-galactose, Acta Crystallogr. 32B:1016 (1976).Google Scholar
  43. 43.
    G. A. Jeffrey and S. Takagi, Hydrogen-bond structure in carbohydrate crystals, Accounts Chem. Res. 11:264 (1978).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Robert K. Yu
    • 1
  • Theodore A. W. KoernerJr.
    • 1
  • Peter C. Demou
    • 1
  • J. Neel Scarsdale
    • 1
  • James H. Prestegard
    • 1
  1. 1.Yale UniversityNew HavenUSA

Personalised recommendations