Skip to main content

Exogenous Gangliosides Enhance Recovery from CNS Injury

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 174))

Abstract

Since gangliosides are found in high concentration in the CNS1,2 and are topographically localized to the outer surface of neuronal membranes3,4, they have been implicated as receptor molecules. Some hypotheses suggest that gangliosides participate in the regulation of neurogenesis,5synaptogenesis,6 regeneration7 as well as cell-cell interaction.8 Reports that antibody to ganglioside can inhibit neurite outgrowth in vitro9,10 and can interfere with synaptogenesis and neurogenesis in vivo indirectly support these hypotheses.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. A. Skrivanek, R. W. Ledeen, R. U. Margolis, and R. K. Margolis, Gangliosides associated with microsomal subfractions of brain: Comparison with synaptic plasma membranes, J, Neurobiol. 13:95 (1982).

    Article  CAS  Google Scholar 

  2. P. Fishman and R. Brady, Biosynthesis and function of ganglio-sides, Science 194:904 (1976).

    Article  Google Scholar 

  3. S. P. Mahadik, B. Hungund, and M. M. Rapport, Topographic studies of glycoproteins of intact synaptosomes from rat brain cortex, Biochimica & Biophys. Acta 515:240 (1978).

    Article  Google Scholar 

  4. B. Hungund and S. P. Mahadik, Topographic studies of ganglio-sides of intact synaptosomes from rat brain cortex, Neurochem. Res. 6:183 (1981).

    Article  PubMed  CAS  Google Scholar 

  5. M. Willinger and M. Schachner, GM1 ganglioside as marker for neuronal differentiation in mouse cerebellum, Dev. Biol. 74:101 (1980).

    Article  PubMed  CAS  Google Scholar 

  6. K. Obata, M. Oide, and S. Handa, Effects of glycolipids on in vitro development of neuromuscular junction, Nature 266:369 (1977).

    Article  PubMed  CAS  Google Scholar 

  7. A. Gorio, P. Marini, and R. Zanoni, Muscle reinnervation — III. Motoneuron sprouting capacity, enhancement by exogenous gangliosides, Neurosci. 3:417 (1983).

    Article  Google Scholar 

  8. T. Yamakawa and Y. Nagai, Glycolipids at the cell surface and their biological function, TIBS 3:128 (1979).

    Google Scholar 

  9. M. Schwartz and N. Spirman, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79:6080 (1982).

    Article  PubMed  CAS  Google Scholar 

  10. N. Spirman, B. Sela, and M. Schwartz, Antiganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants, J. Neurochem. 39:874 (1982).

    Article  PubMed  CAS  Google Scholar 

  11. E. Kasarskis, S. Karpiak, M.M. Rapport, R. Yu, N. Bass, Abnormal maturation of cerebral cortex and behavior in adult rats after neonatal administration of antibodies to GMl ganglioside, Dev. Brain Res. 1:1 (1980).

    Google Scholar 

  12. F. J. Roisen, H. Bartfeld, R. Nagele, and G. Yorke, Ganglioside stimulation of axonal sprouting in vitro, Science 214:577 (1981).

    Article  PubMed  CAS  Google Scholar 

  13. A. Leon, L. Facci, D. Benvegnu, and G. Toffano, Morphological and biochemical effects of gangliosides in neuroblastoma cells, Dev. Neurosci. 5:108 (1982).

    Article  PubMed  CAS  Google Scholar 

  14. A. Gorio, P. Marini, and R. Zanoni, Muscle reinnervation — III. Motoneuron sprouting capaticy, enhancement by exogenous gangliosides, Neurosci. 3:417 (1983).

    Article  Google Scholar 

  15. D. Kleinebeckel, Acceleration of muscle re-innervation in rats by ganglioside treatment: An electromyographic study, Eur. J. Pharm. 80:243 (1982).

    Article  CAS  Google Scholar 

  16. G. Tettamanti, B. Veerando, S. Roberti, V. Chigorno, S. S. Sonnino, R. Ghidoni, P. Orlando, and P. Masari, The fate of exogenously administered brain gangliosides. In “Gangliosides in Neurological and Neuromuscular Function, Development and Repair”, M. Rapport and A. Gorio, eds., Raven Press, New York, pp. 225–240 (1981).

    Google Scholar 

  17. G. Toffano, D. Benvegnu, A. Bonetti, L. Facci, A. Leon, P. Orlando, R. Ghidoni, and G. Tettamanti, Interaction of GM1 ganglioside with crude brain neuronal membranes, J. Neurochem. 35:861 (1980).

    Article  PubMed  CAS  Google Scholar 

  18. P. Fishman, J. Moss, and V. Manganiello, Synthesis and uptake of gangliosides by choleragen-responsive human fibroblasts, J. Biochem. 16:1871 (1977).

    Article  CAS  Google Scholar 

  19. E. O’Keefe and P. Cuatrecasas, Persistence of exogenous, inserted ganglioside GM1 on the cell surface of cultured cells, Life Sci. 21:1649 (1977).

    Article  PubMed  Google Scholar 

  20. S. Kanda, K. Inoue, S. Nojima, H. Utsumi, and H. Wiegandt, Incorporation of spin-labeled ganglioside analogues into cell and liposomal membranes, J. Biochem. 91:1707 (1982).

    PubMed  CAS  Google Scholar 

  21. O. Steward, C. Cotman, and G. Lynch, A quantitative autoradiographic and electrophysiological study of the reinnervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions, Brain Res. 114:181 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. O. Steward, Assessing the functional significance of lesion-induced neuronal plasticity, Int. Rev. Neurobiol. 23:197 (1982).

    Article  PubMed  CAS  Google Scholar 

  23. A. Caceres and O. Steward, Dendritic reorganization in the denervated dentate gyrus of the rat following entorhinal cortical lesions: a golgi and electron microscopic analysis, J. Comp. Neurol. 214:387 (1983).

    Article  Google Scholar 

  24. J. Loesche and O. Steward, Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: Recovery of alternation performance following unilateral entorhinal cortex lesions, Brain Res. 2:31 (1977).

    CAS  Google Scholar 

  25. O. Steward, Reinnervation of dentate gyrus by homologous afferents following entorhinal cortical lesions in adult rats, Science 194:426 (1976).

    Article  PubMed  CAS  Google Scholar 

  26. O. Steward and S. Vinsant, Collateral projections of cells in the surviving entorhinal area which reinnervate the dentate gyrus of the rat following unilateral entorhinal lesions, Brain Res. 149:216 (1978).

    Article  PubMed  CAS  Google Scholar 

  27. O. Steward and S. Scoville, Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat, J. Comp. Neurol. 169:347 (1976).

    Article  PubMed  CAS  Google Scholar 

  28. O. Steward and S. Vinsant, Identification of the cells of origin of a central pathway which sprouts following lesions in mature rats, Brain Res. 147:223 (1978).

    Article  PubMed  CAS  Google Scholar 

  29. S. Karpiak, M. M. Rapport, and F. Bowen, Immunologically induced behavioral and electrophysiological changes in the rat, Neuropsychologia 12:313 (1973).

    Article  Google Scholar 

  30. S. Karpiak, Ganglioside treatment improves recovery of altena-tion behavior after unilateral entorhinal cortex lesion, Exp. Neurol. 81:330 (1983).

    Article  PubMed  CAS  Google Scholar 

  31. E. Bremer and L. Hakomori, GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function, Biochem. Bioph. Res, Comm. 106:711 (1982).

    Article  CAS  Google Scholar 

  32. L. Irwin, D. Michael, and C. Irwin, Ganglioside patterns of fetal rat and mouse brain, J. of Neurochem. 34:1527 (1980).

    Article  CAS  Google Scholar 

  33. F. Cumar, B. Maggio, and R. Capputo, Dopamine release from nerve endings induced by polysialogangliosides, Biochem. and Biophys. Res. Comm. 84:65 (1978).

    Article  CAS  Google Scholar 

  34. D. Purpura and H. Baker, Neurite induction in mature cortical neurones in feline GM1-ganglioside storage disease, Nature 266:553 (1977).

    Article  PubMed  CAS  Google Scholar 

  35. S. Karpiak, F. Vilim, and S. Mahadik, GM1 ganglioside facilitates functional recovery after an entorhinal lesion; increase in AChE in dentate gyrus, Soc. Neurosci Abstr. 9:699 (1983).

    Google Scholar 

  36. B. Oderfeld-Nowak, M. Jezierska, J. Ulas, K. Mitros, and A. Wieraszko, Plastic responses of cholinergic parameters in the hippocampus induced by entorhinal cortex lesions are intensified by GM1 ganglioside treatment, Abstr from the Cell Biology of Neuronal Plasticity, Sardinia, Italy, p. 115 (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Karpiak, S.E. (1984). Exogenous Gangliosides Enhance Recovery from CNS Injury. In: Ledeen, R.W., Yu, R.K., Rapport, M.M., Suzuki, K. (eds) Ganglioside Structure, Function, and Biomedical Potential. Advances in Experimental Medicine and Biology, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1200-0_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1200-0_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1202-4

  • Online ISBN: 978-1-4684-1200-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics