Exogenous Gangliosides Enhance Recovery from CNS Injury

  • Stephen E. Karpiak
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


Since gangliosides are found in high concentration in the CNS1,2 and are topographically localized to the outer surface of neuronal membranes3,4, they have been implicated as receptor molecules. Some hypotheses suggest that gangliosides participate in the regulation of neurogenesis,5synaptogenesis,6 regeneration7 as well as cell-cell interaction.8 Reports that antibody to ganglioside can inhibit neurite outgrowth in vitro9,10 and can interfere with synaptogenesis and neurogenesis in vivo indirectly support these hypotheses.


Alternation Behavior Total Ganglioside Muscle Reinnervation Entorhinal Cortex Lesion Exogenous Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. A. Skrivanek, R. W. Ledeen, R. U. Margolis, and R. K. Margolis, Gangliosides associated with microsomal subfractions of brain: Comparison with synaptic plasma membranes, J, Neurobiol. 13:95 (1982).CrossRefGoogle Scholar
  2. 2.
    P. Fishman and R. Brady, Biosynthesis and function of ganglio-sides, Science 194:904 (1976).CrossRefGoogle Scholar
  3. 3.
    S. P. Mahadik, B. Hungund, and M. M. Rapport, Topographic studies of glycoproteins of intact synaptosomes from rat brain cortex, Biochimica & Biophys. Acta 515:240 (1978).CrossRefGoogle Scholar
  4. 4.
    B. Hungund and S. P. Mahadik, Topographic studies of ganglio-sides of intact synaptosomes from rat brain cortex, Neurochem. Res. 6:183 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    M. Willinger and M. Schachner, GM1 ganglioside as marker for neuronal differentiation in mouse cerebellum, Dev. Biol. 74:101 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    K. Obata, M. Oide, and S. Handa, Effects of glycolipids on in vitro development of neuromuscular junction, Nature 266:369 (1977).PubMedCrossRefGoogle Scholar
  7. 7.
    A. Gorio, P. Marini, and R. Zanoni, Muscle reinnervation — III. Motoneuron sprouting capacity, enhancement by exogenous gangliosides, Neurosci. 3:417 (1983).CrossRefGoogle Scholar
  8. 8.
    T. Yamakawa and Y. Nagai, Glycolipids at the cell surface and their biological function, TIBS 3:128 (1979).Google Scholar
  9. 9.
    M. Schwartz and N. Spirman, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79:6080 (1982).PubMedCrossRefGoogle Scholar
  10. 10.
    N. Spirman, B. Sela, and M. Schwartz, Antiganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants, J. Neurochem. 39:874 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Kasarskis, S. Karpiak, M.M. Rapport, R. Yu, N. Bass, Abnormal maturation of cerebral cortex and behavior in adult rats after neonatal administration of antibodies to GMl ganglioside, Dev. Brain Res. 1:1 (1980).Google Scholar
  12. 12.
    F. J. Roisen, H. Bartfeld, R. Nagele, and G. Yorke, Ganglioside stimulation of axonal sprouting in vitro, Science 214:577 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Leon, L. Facci, D. Benvegnu, and G. Toffano, Morphological and biochemical effects of gangliosides in neuroblastoma cells, Dev. Neurosci. 5:108 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    A. Gorio, P. Marini, and R. Zanoni, Muscle reinnervation — III. Motoneuron sprouting capaticy, enhancement by exogenous gangliosides, Neurosci. 3:417 (1983).CrossRefGoogle Scholar
  15. 15.
    D. Kleinebeckel, Acceleration of muscle re-innervation in rats by ganglioside treatment: An electromyographic study, Eur. J. Pharm. 80:243 (1982).CrossRefGoogle Scholar
  16. 16.
    G. Tettamanti, B. Veerando, S. Roberti, V. Chigorno, S. S. Sonnino, R. Ghidoni, P. Orlando, and P. Masari, The fate of exogenously administered brain gangliosides. In “Gangliosides in Neurological and Neuromuscular Function, Development and Repair”, M. Rapport and A. Gorio, eds., Raven Press, New York, pp. 225–240 (1981).Google Scholar
  17. 17.
    G. Toffano, D. Benvegnu, A. Bonetti, L. Facci, A. Leon, P. Orlando, R. Ghidoni, and G. Tettamanti, Interaction of GM1 ganglioside with crude brain neuronal membranes, J. Neurochem. 35:861 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    P. Fishman, J. Moss, and V. Manganiello, Synthesis and uptake of gangliosides by choleragen-responsive human fibroblasts, J. Biochem. 16:1871 (1977).CrossRefGoogle Scholar
  19. 19.
    E. O’Keefe and P. Cuatrecasas, Persistence of exogenous, inserted ganglioside GM1 on the cell surface of cultured cells, Life Sci. 21:1649 (1977).PubMedCrossRefGoogle Scholar
  20. 20.
    S. Kanda, K. Inoue, S. Nojima, H. Utsumi, and H. Wiegandt, Incorporation of spin-labeled ganglioside analogues into cell and liposomal membranes, J. Biochem. 91:1707 (1982).PubMedGoogle Scholar
  21. 21.
    O. Steward, C. Cotman, and G. Lynch, A quantitative autoradiographic and electrophysiological study of the reinnervation of the dentate gyrus by the contralateral entorhinal cortex following ipsilateral entorhinal lesions, Brain Res. 114:181 (1976).PubMedCrossRefGoogle Scholar
  22. 22.
    O. Steward, Assessing the functional significance of lesion-induced neuronal plasticity, Int. Rev. Neurobiol. 23:197 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    A. Caceres and O. Steward, Dendritic reorganization in the denervated dentate gyrus of the rat following entorhinal cortical lesions: a golgi and electron microscopic analysis, J. Comp. Neurol. 214:387 (1983).CrossRefGoogle Scholar
  24. 24.
    J. Loesche and O. Steward, Behavioral correlates of denervation and reinnervation of the hippocampal formation of the rat: Recovery of alternation performance following unilateral entorhinal cortex lesions, Brain Res. 2:31 (1977).Google Scholar
  25. 25.
    O. Steward, Reinnervation of dentate gyrus by homologous afferents following entorhinal cortical lesions in adult rats, Science 194:426 (1976).PubMedCrossRefGoogle Scholar
  26. 26.
    O. Steward and S. Vinsant, Collateral projections of cells in the surviving entorhinal area which reinnervate the dentate gyrus of the rat following unilateral entorhinal lesions, Brain Res. 149:216 (1978).PubMedCrossRefGoogle Scholar
  27. 27.
    O. Steward and S. Scoville, Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat, J. Comp. Neurol. 169:347 (1976).PubMedCrossRefGoogle Scholar
  28. 28.
    O. Steward and S. Vinsant, Identification of the cells of origin of a central pathway which sprouts following lesions in mature rats, Brain Res. 147:223 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    S. Karpiak, M. M. Rapport, and F. Bowen, Immunologically induced behavioral and electrophysiological changes in the rat, Neuropsychologia 12:313 (1973).CrossRefGoogle Scholar
  30. 30.
    S. Karpiak, Ganglioside treatment improves recovery of altena-tion behavior after unilateral entorhinal cortex lesion, Exp. Neurol. 81:330 (1983).PubMedCrossRefGoogle Scholar
  31. 31.
    E. Bremer and L. Hakomori, GM3 ganglioside induces hamster fibroblast growth inhibition in chemically-defined medium: Ganglioside may regulate growth factor receptor function, Biochem. Bioph. Res, Comm. 106:711 (1982).CrossRefGoogle Scholar
  32. 32.
    L. Irwin, D. Michael, and C. Irwin, Ganglioside patterns of fetal rat and mouse brain, J. of Neurochem. 34:1527 (1980).CrossRefGoogle Scholar
  33. 33.
    F. Cumar, B. Maggio, and R. Capputo, Dopamine release from nerve endings induced by polysialogangliosides, Biochem. and Biophys. Res. Comm. 84:65 (1978).CrossRefGoogle Scholar
  34. 34.
    D. Purpura and H. Baker, Neurite induction in mature cortical neurones in feline GM1-ganglioside storage disease, Nature 266:553 (1977).PubMedCrossRefGoogle Scholar
  35. 35.
    S. Karpiak, F. Vilim, and S. Mahadik, GM1 ganglioside facilitates functional recovery after an entorhinal lesion; increase in AChE in dentate gyrus, Soc. Neurosci Abstr. 9:699 (1983).Google Scholar
  36. 36.
    B. Oderfeld-Nowak, M. Jezierska, J. Ulas, K. Mitros, and A. Wieraszko, Plastic responses of cholinergic parameters in the hippocampus induced by entorhinal cortex lesions are intensified by GM1 ganglioside treatment, Abstr from the Cell Biology of Neuronal Plasticity, Sardinia, Italy, p. 115 (1983)Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Stephen E. Karpiak
    • 1
  1. 1.Division of Neuroscience, New York State Psychiatric Institute and the Dept. of PsychiatryCollege of Physicians & Surgeons, Columbia Univ.N.Y.USA

Personalised recommendations