Effects of Gangliosides on the Functional Recovery of Damaged Brain

  • G. Toffano
  • G. Savoini
  • C. Aldinio
  • G. Valenti
  • R. Dal Toso
  • A. Leon
  • L. Calza
  • I. Zini
  • L. F. Agnati
  • K. Fuxe
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


Treatment of brain and spinal cord injuries is usually undertaken with the tacit assumption that anatomical repair is not possible. This view implies serious limitations for the comprehension of phenomena such as neuronal plasticity and functional recovery of mature CNS. Currently however neuronal circuitries are envisaged as highly adaptable structures, intrinsically capable of remodeling and establishing new functional connections not only during development but also in the mature brain in response to perturbations such as lesions,1,2The failure of regeneration in the mature central nervous tissues may then rather be due to the incapability of growing axon sprouts to elongate and find a pathway to the denervated target.3


Tyrosine Hydroxylase Substantia Nigra Dopaminergic Neuron Septal Lesion Striatal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Björklund and U. Stenevi, Regeneration of monoaminergic and cholinergic neurons in the mammalian central nervous system, Physiol. Rev. 59:62 (1979).PubMedGoogle Scholar
  2. 2.
    C. W. Cotman, M. Nieto-Sampedro, and E. W. Harris, Synapse replacement in the nervous system of adult vertebrates, Physiol. Rev. 61:684 (1981).PubMedGoogle Scholar
  3. 3.
    M. Benfey and A. J. Aguayo, Extensive elongation of axons from rat brain into peripheral nerve grafts, Nature 296:150 (1982).PubMedCrossRefGoogle Scholar
  4. 4.
    G. Kolata, Grafts correct brain damage, Science 217:342 (1982).PubMedCrossRefGoogle Scholar
  5. 5.
    S. H. Appel, A unifying hypothesis for the cause of amyotrophic lateral sclerosis parkinsonism and Alzheimer disease, Ann. Neurol, 10:499 (1981).PubMedCrossRefGoogle Scholar
  6. 6.
    G. Toffano, G. Savoini, C. Aldinio, G. Valenti, F. Moroni, G. Lombardi, L. F. Agnati, and K. Fuxe, A role for exogenous gangliosides in the functional recovery of adult lesioned nervous system, in press.Google Scholar
  7. 7.
    S. Varon and R. Adler, Trophic and specifying factors directed to neuronal cells, in: “Advances in Cellular Biology”, Vol. 2, Academic Press, New York (1981).Google Scholar
  8. 8.
    G. Toffano, D. Benvegnu, R. Dal Toso, L. Facci, and A. Leon, Neuronal development and regeneration: a role for gangliosides, in: “Neural Membranes”, G. Y. Sun, N. Bazan, J.-Y. Wu, G. Porcellati, and A. Y. Sun, eds., The Humana Press, Clifton (1983).Google Scholar
  9. 9.
    R. W. Ledeen, Ganglioside structure and distribution: are they localized at the nerve ending?, J. Supramol. Struct. 8:1 (1978).PubMedCrossRefGoogle Scholar
  10. 10.
    T. Yamakawa and Y. Nagai, Glycolipids at the cell surface and their biological functions, Trends Biochem. Sci. 3:128 (1978).CrossRefGoogle Scholar
  11. 11.
    G. Toffano, G. E. Savoini, F. Moroni, M. G. Lombardi, L. Calza, and L. F. Agnati, GM1 ganglioside stimulates the regeneration of dopaminergic neuron in the central nervous system, Brain Res. 261:128 (1983).CrossRefGoogle Scholar
  12. 12.
    A. Leon, L. Facci, D. Benvegnu, and G. Toffano, Morphological and biochemical effects of gangliosides in neuroblastoma cells, Develop. Neurosci. 5:108 (1982).CrossRefGoogle Scholar
  13. 13.
    G. Ferrari, M. Fabris, and A. Gorio, Gangliosides enhance neurite outgrowth in PC12 cells, Develop. Brain Res. (in press.Google Scholar
  14. 14.
    F. J. Roisen, H. Bartfeld, R. Magelle, and G. Yorke, Ganglioside stimulation of axonal sprouting in vitro, Science 214:577 (1981).PubMedCrossRefGoogle Scholar
  15. 15.
    U. Mengs, H. L. U. Tullner, R. Goldschmidt, and F. K. Pieran, Influence of gangliosides on neurite sprouting and arborization in vitro, Int. J. Tiss. Reac. 4:277 (1982).Google Scholar
  16. 16.
    K. Obata, M. Oide, and S. Handa, Effects of glycolipids on in vitro development of neuromuscular juction, Nature 266:369 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    J. I. Morgan and W. Seifert, Growth factors and gangliosides: a possible new perspective in neuronal growth control, J. Supramol. Struct. 10:111 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    M. Schwartz and N. Spirman, Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity purified antiganglioside antibodies, Proc. Natl. Acad. Sci. USA 79:6080 (1982).PubMedCrossRefGoogle Scholar
  19. 19.
    G. Toffano, D. Benvegnu, A. C. Bonetti, L. Facci, A. Leon, P. Orlando, R. Ghidoni, and A. C. Tettamanti, Interactions of GM1 ganglioside with crude rat brain neuronal membranes, J. Neurochem. 35:861 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    L. Facci, A. Leon, G. Toffano, S. Sonnino, R. Ghidoni, and G. Tettamanti, Promotion of neuritogenesis in mouse neuroblastoma cells by exogenous gangliosides. Relationship between the effect and the cell association of ganglioside GM1, J. Neurochem. in press.Google Scholar
  21. 21.
    A. Leon, L. Facci, G. Toffano, S. Sonnino, and G. Tettamanti, Activation of (Na+, K+) ATPase by nanomolar concentrations of GM1 ganglioside, J. Neurochem. 37:350 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    C. R. Partington and J. W. Daly, Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes, Mol. Pharmacol. 15:484 (1979).PubMedGoogle Scholar
  23. 23.
    M. Willinger and M. Schachner, GM1 ganglioside as a marker for neuronal differentiation in mouse cerebellum, Develop. Biol. 74:101 (1980).PubMedCrossRefGoogle Scholar
  24. 24.
    B. Ceccarelli, F. Aporti, and M. Finesso, Effects of brain gangliosides on functional recovery in experimental regeneration and reinnervation, Adv. Exp. Med. Biol. 71:275 (1976).PubMedGoogle Scholar
  25. 25.
    A. Gorio, G. Carmignoto, L. Facci, and M. Finesso, Motor nerve sprouting induced by ganglioside treatment. Possible implication for gangliosides neuronal growth, Brain Res. 197:236 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    M. Wojcik, J. Ulas, and B. Oderfeld-Nowak, The stimulating effect of ganglioside injection on the recovery of choline acetyltransferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions, Neurosci. 7:495 (1982).CrossRefGoogle Scholar
  27. 27.
    N. Spirman, B. A. Sela, and M. Schwartz, Antiganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants, J. Neurochem. 39:874 (1982).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Karpiak, Y. L. Huang, and M. M. Rapport, Immunological model of epilepsy, J. Neurochem. 3:15 (1982).Google Scholar
  29. 29.
    D. P. Purpura, G. D. Pappas, and H. J. Baker, Meganeurites and aberrant processes of neurones on GM1-gangliosidosis. A Golgi study, Brain Res. 145:13 (1977).Google Scholar
  30. 30.
    G. Savoini, K. Fuxe, L. F. Agnati, L. Calza, F. Moroni, M. G. Lombardi, M. Goldstein, and G. Toffano, Effect of GM1 ganglioside on the recovery of dopaminergic nigro-striatal neurons after lesion, Study Group on Neuroplasticity and Repair in Central Nervous System, Geneva (1982).Google Scholar
  31. 31.
    K. Fuxe, L. F. Agnati, L. Calza, I. Zini, F. Benfenati, G. Toffano, M. Goldstein, and C. Kohler, Chemical morphometry as tool to study gangliosides as growth regulation factor in central catecholamine neurons. Study Group on Neuroplasticity and Repair in Central Nervous System, Geneva (1983).Google Scholar
  32. 32.
    G. M. Gilad and D. J. Reis, Collateral sprouting in cerebral mesolimbic dopamine neurons: biochemical and immunocyto-chemical evidence of changes in the activity and distribution of tyrosine hydroxylase in terminal fields and in cell bodies, Brain Res. 160:17 (1979).PubMedCrossRefGoogle Scholar
  33. 33.
    D. J. Reis, G. Gilad, V. M. Pickel, and T. H. Joh, Reversible changes in the activities and amounts of tyrosine hydroxylase in dopamine neurons of the substantia nigra in response to axonal injury as studied by immunochemical and immunocytochemical methods, Brain Res. 144:325 (1978).PubMedCrossRefGoogle Scholar
  34. 34.
    A. Prochiantz, M. C. Daguet, A. Herbert, and J. Glowinski, Specific stimulation of in vitro maturation of mesencephalic dopaminergic neurones by striatal membranes, Nature 293:570 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    W. Seifert, Gangliosides in nerve cell cultures, in: “Gang-liosides in neurological and neuromuscular function, development and repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York (1980).Google Scholar
  36. 36.
    B. Berger, U. Di Porzio, M. C. Daguet, M. Gay, A. Virginy, J. Glowinski, and A. Pochiantz, Long term development of mesencephalic dopaminergic neurons of mouse embryos in dissociated primary cultures: morphological and histochemical characteristics, Neuroscience 7:193 (1982).PubMedCrossRefGoogle Scholar
  37. 37.
    B. Oderfeld-Nowak, J. Ulas, M. Jezierska, M. Skup, M. Wojcik, and K. Domanska, Role of GM1 ganglioside in repair processes after hippocampal deafferentation in rats. Study Group on Neuronal Plasticity and Repair in Central Nervous System, Geneva (1982).Google Scholar
  38. 38.
    A. Björklund and U. Stenevi, In vivo evidence for a hippocampal adrenergic neuronotrophic factor specifically released on septal deafferentation, Brain Res. 229:403 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • G. Toffano
    • 1
  • G. Savoini
    • 1
  • C. Aldinio
    • 1
  • G. Valenti
    • 1
  • R. Dal Toso
    • 1
  • A. Leon
    • 1
  • L. Calza
    • 2
  • I. Zini
    • 2
  • L. F. Agnati
    • 2
  • K. Fuxe
    • 3
  1. 1.Department of BiochemistryFidia Research LaboratoriesAbano TermeItaly
  2. 2.Institute of Human PhysiologyUniversity of ModenaModenaItaly
  3. 3.Department of HistologyKarolinska InstitutetStockholmSweden

Personalised recommendations