Gangliosides: Structure and Analysis

  • Robert K. Yu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


It was nearly half a century ago that Professor E. Klenk first isolated gangliosides from the brain of a Niemann-Pick patient1 and later from the brain of a Tay-Sachs patient.2 Subsequently, these substances were isolated from normal brains,3, 4 and the name “gangliosides” was proposed by Professor Klenk to reflect their glycosidic nature and apparent localization in the ganglion cells (Ganglienzellen) of the brain. Early structural studies by Klenk and other investigators also established the presence of sialic acid in the oligosaccharide chain. However, the detailed chemical structure of a ganglioside was not determined until the early 50’s and 60’s when Yamakawa, Klenk and their co-workers isolated hematoside from horse erythrocytes and elucidated its structure.5, 6 In 1963, Kuhn and Wiegandt7, 8 determined the structure of the four major mammalian brain gangliosides, namely GI, GII, GIII and GIV now more widely known as GM1, GDla, GDlb and GTlb, respectively.9 Shortly thereafter, the correct structure of the major ganglioside in Tay-Sachs brain, GM2 was proposed by Makita and Yamakawa10 (the asialo form) and proved by Ledeen and Salsman.11 Finally, the α-D ketosidic configuration of the sialic acid moiety in gangliosides was established by Yu and Ledeen in 1969.12


Sialic Acid Sialic Acid Residue Fast Atom Bombardment Mass Spectrometry Alditol Acetate Chromium Trioxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Klenk, Über der Natur der phosphatide und anderer Lipoide des Gehirns und der Leber in Niemann-Pickscher Krankheit, Hoppe-Seyler’s Z. Physiol. Chem. 235:25 (1935).CrossRefGoogle Scholar
  2. 2.
    E. Klenk, Beiträge zur Chemie der Lipoidosen, III: Neimann-Picksche Krankheit und amaurotische Idiotie, Hoppe-Seyler’s Z. Physiol. Chem. 262:128 (1939).CrossRefGoogle Scholar
  3. 3.
    G. Blix, Einige Beobachtungen über eine hexosaminehaltinge Substanz in der Protagonfraktion des Gehirns, Skand. Arch. Physiol. 80:46 (1938).Google Scholar
  4. 4.
    E. Klenk, Uber die Ganglioside, eine neue Gruppe von zuckerhaltigen Gehirnlipoiden, Hoppe-Seyler’s Z. Physiol. Chem. 273:76 (1942).CrossRefGoogle Scholar
  5. 5.
    T. Yamakawa and S. Suzuki, The chemistry of posthemolytic residue or stroma of erythrocytes. I. Concerning the ether-insoluble lipids of lyophilized horse blood stroma, J. Biochem. 38:199 (1951).Google Scholar
  6. 6.
    E. Klenk and G. Padberg, Uber die Ganglioside von Pferdeerythrocyten, Hoppe-Seyler’s Z. Physiol. Chem. 327:249 (1962).CrossRefGoogle Scholar
  7. 7.
    R. Kuhn and H. Wiegandt, Die Konstitution der Ganglio-N-tetraose und des Ganglioside GI, Chem. Ber. 96:866 (1963).CrossRefGoogle Scholar
  8. 8.
    R. Kuhn and H. Weigandt, Die Konstitution der Ganglioside GII, GIII und GIV, Z. Naturforsch. 18b:541 (1963).Google Scholar
  9. 9.
    L. Svennerholm, Chromatographic separation of human brain gangliosides, J. Neurochem. 10:613 (1963).PubMedCrossRefGoogle Scholar
  10. 10.
    A. Makita and T. Yamakawa, The glycolipids of the brain of Tay-Sachs’ disease — the chemical structure of a globoside and main ganglioside, Japan J. Exp. Med. 33:361 (1963).Google Scholar
  11. 11.
    R. Ledeen and K. Salsman, Structure of the Tay-Sachs’ ganglioside. I., Biochemistry 4:2225 (1965).CrossRefGoogle Scholar
  12. 12.
    R. K. Yu and R. W. Ledeen, The glycosidic linkage of sialic acid, J. Biol. Chem. 244:1306 (1969).PubMedGoogle Scholar
  13. 13.
    S.-I. Hakomori, Glycosphingolipids in cellular interaction, differentiation, and oncogenesis, Ann. Rev. Biochem. 50:733 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    R. W. Ledeen and R. K. Yu, Gangliosides: structure, isolation, and analysis, Methods Enz. 83:140 (1982).Google Scholar
  15. 15.
    R. W. Ledeen, Gangliosides, in: Handbook of Neurochemistry, A. Lajtha, ed., Vol. 3, 2nd Ed., pp. 41–90, Plenum, New York (1983).Google Scholar
  16. 16.
    H. Wiegandt, The gangliosides, Adv. Neurochem. 4:149 (1982).CrossRefGoogle Scholar
  17. 17.
    S. Ando, Gangliosides in the nervous system, Neurochem. Internat. 5:507 (1983).CrossRefGoogle Scholar
  18. 18.
    E. Brunngraber, Neurochemistry of Aminosugars. Neurochemistry and Neuropathology of the Complex Carbohydrates, Charles C. Thomas, Springfield, IL (1979).Google Scholar
  19. 19.
    L. Svennerholm, P. Mandel, H. Dreyfus, and P.-F. Urban, eds., Structure and Function of Gangliosides, Plenum, N.Y. (1980).Google Scholar
  20. 20.
    A. Makita, S. Handa, T. Taketomi, and Y. Nagai, eds. New Vistas in Glycolipid Research, Plenum, N.Y. (1982).Google Scholar
  21. 21.
    J.-L. Chien and E. L. Hogan, Novel pentahexosyl ganglioside of the globo-series purified from chicken muscle, J. Biol. Chem. 258:10727 (1983).PubMedGoogle Scholar
  22. 22.
    R. Kannagi, S. B. Levery, F. Ishigami, S.-I. Hakomori, L. H. Shevinsky, B. B. Knowles, and D. Solter, New globoseries glycosphingolipids in human teratocarcinoma reactive with the monoclonal antibody directed to a developmentally regulated antigen, stage-specific embryonic antigen 3, J. Biol. Chem. 258:8934 (1983).PubMedGoogle Scholar
  23. 23.
    G. A. Schwarting, P. C. Carroll, and W. C. DeWolf, Fucosyl-globoside and sialosyl-globoside are new glycolipids isolated from human teratocarcinoma cells, Biochem. Biophys. Res. Comm. 113:935 (1983).CrossRefGoogle Scholar
  24. 24.
    J. Dabrowski, P. Hanfland, and H. Egge, Analysis of glycosphingolipids by high-resolution proton nuclear magnetic resonance spectroscopy, Methods Enz. 83:69 (1982).CrossRefGoogle Scholar
  25. 25.
    L. Warren, The thiobarbituric acid assay of sialic acids, J. Biol. Chem. 234:1971 (1959).PubMedGoogle Scholar
  26. 26.
    D. Aminoff, Method for quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids, Biochem. J. 81:384 (1961).PubMedGoogle Scholar
  27. 27.
    L. Svennerholm, Quantitative estimation of sialic acids. II. A colorimetric resorcinol-hydrochloric acid method, Biochim. Biophys. Acta 24:604 (1957).PubMedCrossRefGoogle Scholar
  28. 28.
    R. W. Ledeen and R. K. Yu, Chemistry and analysis of sialic acids, in: Biological Roles of Sialic Acid, A. Rosenberg and C.-L. Schengrund, eds., pp. 1–57, Plenum, N.Y. (1976).CrossRefGoogle Scholar
  29. 29.
    R. Schauer, Sialic Acids, Chemistry, Metabolism and function, Springer-Verlag, New York (1982).CrossRefGoogle Scholar
  30. 30.
    R. Schauer, Chemistry, metabolism, and biological functions of sialic acids, Adv. Carbohyd. Chem. Biochem. 40:131 (1982).CrossRefGoogle Scholar
  31. 31.
    C. C. Sweeley and B. Walker, Determination of carbohydrates in glycolipids and gangliosides by gas chromatography, Anal. Chem. 36:1461 (1964).CrossRefGoogle Scholar
  32. 32.
    D. E. Vance and C. C. Sweeley, Quantitative determination of neutral glycosylceramides in human blood, J. Lipid Res. 8:621 (1967).PubMedGoogle Scholar
  33. 33.
    S. J. Rickart and C. C. Sweeley, Quantitative analysis of carbohydrate residues of glycoproteins and glycolipids by gas-liquid chromatography. An appraisal of experimentals, J. Chromatogr. 147:317 (1978).CrossRefGoogle Scholar
  34. 34.
    S. Ando and T. Yamakawa, Application of trifluoroacetyl derivatives to sugar and lipid chemistry. I. Gas chromatographic analysis of common constituents of glycolipids. J. Biochem. 70:335 (1971).PubMedGoogle Scholar
  35. 35.
    J. P. Zanetta, W. C. Breckenridge, and G. Vincendon, Analysis of monosaccharides by gas-liquid chromatography of the O-methyl glycosides as trifluoracetate derivatives. Application to glycoproteins and glycolipids, J. Chromatog. 69:291 (1972).CrossRefGoogle Scholar
  36. 36.
    R. K. Yu and R. W. Ledeen, Gas-liquid chromatographic assay of lipid-bound sialic acid: measurement of gangliosides in brain of several species, J. Lipid Res. 11:506 (1970).PubMedGoogle Scholar
  37. 37.
    J. Ashraf, D. A. Butterfield, J. Jarnefelt, and R. A. Laine, Enhancement of the Yu and Ledeen gas-liquid chromatographic method for sialic acid estimation: use of methane chemical ionization mass fragmentography, J. Lipid Res. 21:1137 (1980).PubMedGoogle Scholar
  38. 38.
    S. Hakomori and T. Saito, Isolation and characterization of a glycosphingolipid having a new sialic acid, Biochemistry 8:5082 (1969).PubMedCrossRefGoogle Scholar
  39. 39.
    R. Ghidoni, S. Sonnino, G. Tettamanti, N. Baumann, G. Reuter, and R. Schauer, Isolation and characterization of trisialoganglioside from mouse brain, containing 9-O-acetyl-neuraminic acid, J. Biol. Chem. 255:6990 (1980).PubMedGoogle Scholar
  40. 40.
    S. Sonnino, R. Ghidoni, V. Chigorno, and G. Tettamanti, Chemistry of gangliosides carrying O-acetylated sialic acid, Adv. Exp. Med. Biol. 152:55 (1982).PubMedGoogle Scholar
  41. 41.
    V. Chigorno, S. Sonnino, R. Ghidoni, and G. Tettamanti, Isolation and characterization of a tetrasialoganglioside from mouse brain, containing 9-O-acetyl, N-acetylneuraminic acid, Neurochem. Intern. 4:531 (1982).CrossRefGoogle Scholar
  42. 42.
    J. P. Kamerling, J. F. G. Vliegenthart, C. Versluis, and R. Schauer, Identification of O-acetylated N-acyl-neuraminic acids by mass spectrometry, Carbohyd. Res. 41:7 (1975).CrossRefGoogle Scholar
  43. 43.
    R. Schauer, C. Schroder, and A. K. Shukla, New techniques for the investigation of structure and metabolism of sialic acids, This volume (1984).Google Scholar
  44. 44.
    J. S. Sawardeker, H., J. Sloneker, and A. Jeanes, Quantitative determination of monosaccharides as their alditol acetates by gas-liquid chromatography, Anal. Biochem. 37:1602 (1965).Google Scholar
  45. 45.
    G. G. S. Dutton, Application of gas-liquid chromatography to carbohydrates: Part I, Adv. Carbohyd. Chem. Biochem. 28:11 (1973).CrossRefGoogle Scholar
  46. 46.
    L. A. Torello, A. Y. Yates, and D. K. Thompson, Critical study of the alditol acetate method for quantitating small quantities of hexoses and hexosamines in gangliosides, J. Chromatogr. 202:195 (1980).PubMedCrossRefGoogle Scholar
  47. 47.
    A. B. Blakeney, P. J. Harris, R. J. Henry, and B. A. Stone, A simple and rapid preparation of alditol acetates for monosaccharide analysis, Carbohyd. Res. 113:291 (1983).CrossRefGoogle Scholar
  48. 48.
    B. Nilsson and D. Zopf, Gas chromatography and mass spectrometry of hexosamine-containing oligosaccharide alditols as their permethylated N-trifluoroacetyl derivatives, Methods Enz. 83:46 (1982).CrossRefGoogle Scholar
  49. 49.
    B. Nilsson and D. Zopf, Oligosaccharides released from glycolipids by trifluoroacetolysis can be analyzed by gas chromatography-mass spectrometry, Arch. Biochem. Biophvs. 222:628 (1983).CrossRefGoogle Scholar
  50. 50.
    D. Rolf and G. R. Gray, Reductive cleavage of glycosides, J. Am. Chem. Soc. 104:3539 (1982).CrossRefGoogle Scholar
  51. 51.
    I. Ishizuka and H. Wiegandt, An isomer of trisialoganglio-side and the structure of tetra-and pentasialogangliosides from fish brain, Biochim. Biophvs. Acta 260:279 (1972).Google Scholar
  52. 52.
    S. Ando and R. K. Yu, Isolation and characterization of a novel trisialoganglioside, GTla, from human brain, J. Biol. Chem. 252:6247 (1977).PubMedGoogle Scholar
  53. 53.
    S. Ando and R. K. Yu, Isolation and characterization of two isomers of brain tetrasialogangliosides, J. Biol. Chem. 254:12224 (1979).PubMedGoogle Scholar
  54. 54.
    R. K. Yu and S. Ando, Structures of some new complex gangliosides of fish brain, Adv. Exp. Med. Biol. 125:33 (1980).PubMedGoogle Scholar
  55. 55.
    L. Svennerholm, J.-E. Mansson, and Y.-T. Li, Isolation and structural determination of a novel ganglioside, a disialosylpentahexosylceramide from human brain, J. Biol. Chem. 248:740 (1973).PubMedGoogle Scholar
  56. 56.
    T. Itoh, Y.-T. Li, S.-C. Li, and R. K. Yu, Isolation and characterization of a novel monosialosylpentahexosyl ceramide from Tay-Sachs’ brain, J. Biol. Chem. 256:165 (1981).PubMedGoogle Scholar
  57. 57.
    N. Kasai, L. O. Sillerud, and R. K. Yu, A convenient method for the preparation of asialo-GMl, Lipids 17:107 (1982).PubMedCrossRefGoogle Scholar
  58. 58.
    M. Saito, K. Sugano, and Y. Nagai, Action of Arthrobacter ureafaciens sialidase on sialoglycolipid substrates, J. Biol. Chem. 254:7845 (1979).PubMedGoogle Scholar
  59. 59.
    Y.-T. Li and S.-C. Li, utilization of glycosidases for the structural studies of complex carbohydrate chains, in: CNRS International Symposium on the Structure and Methodology of Glycoconjugates, Vol. 1, pp. 339–350 (1973).Google Scholar
  60. 60.
    C. C. Sweeley and G. Dawson, Determination of glycosphingo-lipid structures by mass spectrometry, Biochem. Biophys. Res. Commun. 37:6 (1969).PubMedCrossRefGoogle Scholar
  61. 61.
    G. Dawson and C. C. Sweeley, Mass spectrometry of neutral, mono-and disialoglycosphingolipids, J. Lipid Res. 12:56 (1971).PubMedGoogle Scholar
  62. 62.
    K. Samuelsson and B. Samuelsson, Gas-liquid chromatography-mass spectrometry of cerebrosides as trimethylsilyl ether derivatives, Biochem. Biophys. Res. Commun. 37:15 (1969).PubMedCrossRefGoogle Scholar
  63. 63.
    K.-A. Karlsson, Structural fingerprinting of gangliosides and other glycoconjugates by mass spectrometry, Adv. Exp. Med. Biol. 125:47 (1980).PubMedGoogle Scholar
  64. 64.
    T. Ariga, R. K. Yu, M. Suzuki, S. Ando, and T. Miyatake, Characterization of GM1 ganglioside by direct inlet chemical ionization mass spectrometry, J. Lipid Res. 23:437 (1982).PubMedGoogle Scholar
  65. 65.
    M. McNeil, A. G. Darvill, P. Aman, L.-E. Franzen, and P. Albersheim. Structural analysis of complex carbohydrates using high-performance liquid chromatography, gas chromatography, and mass spectrometry, Methods Enz. 83:3 (1982).CrossRefGoogle Scholar
  66. 66.
    K. L. Busch and R. G. Cook, Mass spectrometry of large, fragile, and involatile molecules, Science 218:247 (1982).PubMedCrossRefGoogle Scholar
  67. 67.
    K. L. Rinehart, Jr., Fast atom bombardment mass spectrometry, Science 218:254 (1982).PubMedCrossRefGoogle Scholar
  68. 68.
    M. Arita, M. Iwamori, T. Higuchi, and Y. Nagai, 1,1,3,3,-tetramethylurea and triethanolamine as a new useful matrix for fast atom bombardment mass spectrometry of gangliosides and neutral glycosphingolipids, J. Biochem. 93:319 (1983).PubMedGoogle Scholar
  69. 69.
    M. Arita, M. Iwamori, T. Higuchi, and Y. Nagai, Negative ion fast atom bombardment mass spectrometry of gangliosides and asialogangliosides: A useful method for the structural elucidation of gangliosides and related neutral glycosphingolipids, J. Biochem. 94:249 (1983).PubMedGoogle Scholar
  70. 70.
    A. Dell, H. R. Morris, H. Egge, H. von Nicolai, and G. Strecker, Fast-atom-bombardment mass-spectrometry for carbohydrate-structure determination, Carbohyd. Res. 115:41 (1983).CrossRefGoogle Scholar
  71. 71.
    Y. Kushi and S. Handa, Application of field desorption mass spectrometry for the analysis of sphingoglycolipids, J. Biochem. 91:923 (1982).PubMedGoogle Scholar
  72. 72.
    S. Handa and Y. Kushi, High-performance liquid chromotography and structural analysis by field desorption mass spectrometry of underivatized glycolipids, Adv. Exp. Med. Biol. 152:23 (1982).PubMedGoogle Scholar
  73. 73.
    S. Handa, Y. Kushi, H. Kambara, and K. Shizukushi, Secondary ion mass spectra of neutral sphingoglycolipids, J. Biochem. 93:315 (1983).PubMedGoogle Scholar
  74. 74.
    H. Egge, J. Peter-Katalinic, and P. Hanfland, Structure analysis of glycosphingolipids using fast atom bombardment (FAB) techniques, in: This volume (1984).Google Scholar
  75. 75.
    S. Handa and Y. Kushi, Application of field desorption and secondary ion mass spectrometry for glycolipid analysis, in: This volume (1984).Google Scholar
  76. 76.
    T. Feizi, The antigens Ii, SSEA-1, and ABH are in an interrelated system of carbohydrate differentiation antigens expressed on glycosphingolipids and glycoproteins, Adv. Exp. Med. Biol. 152:167 (1982).PubMedGoogle Scholar
  77. 77.
    R. Kannagi, E. Nudelman, S. B. Levery, and S. Hakomori, A series of human erythrocyte glycosphingolipids reacting to the monoclonal antibody directed to a developmentally regulated antigen, SSEA-1, J. Biol. Chem. 257:14865 (1982).PubMedGoogle Scholar
  78. 78.
    S.-I. Hakomori, Monoclonal antibodies directed to cell surface carbohydrates, in: Monoclonal Antibodies and Functional Cell Lines, R. H. Kennett, K. D. Bechtol and T. J. McDearn, eds., (in press) Plenum Publishing Corp., New York (1984).Google Scholar
  79. 79.
    S.-I. Hakomori, A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsufinyl carbanion in dimethyl sulfoxide, J. Biochem. 55:205 (1964).PubMedGoogle Scholar
  80. 80.
    T. Imanari and Z. Tamura, Gas chromatography of glucuronides, Chem. Phar. Bull. 15:1677 (1967).CrossRefGoogle Scholar
  81. 81.
    S. Ando, K. Kon, Y. Nagai, and T. Murata, Chemical ionization and electron impact mass spectra of oligosaccharides derived from sphingoglycolipids, J. Biochem. 82:1623 (1977).PubMedGoogle Scholar
  82. 82.
    J. Finne, T. Krusius, and H. Rauvala, Use of potassium tert-butoxide in the methylation of carbohydrates, Carbohyd. Res. 80:336 (1980).CrossRefGoogle Scholar
  83. 83.
    T. Narui, K. Takahashi, M. Kobayashi, and S. Shibata, Permethylation of polysaccharides by a modified Hakomori method, Carbohyd. Res. 103:293 (1982).CrossRefGoogle Scholar
  84. 84.
    H. Bjorndal, C. G. Hellerqvist, B. Lindberg, and S. Svensson, Gas-liquid chromatography and mass spectrometry in methylation analysis of polysaccharides, Angew. Chem. Int. Ed. Engl. 9:610 (1970).CrossRefGoogle Scholar
  85. 85.
    C. G. Hellerqvist, B. Lindberg, A. Pilotti, and A. A. Lindberg, Structural studies of the O-specific side-chains of the cell-wall lipopolysaccharide from Salmonella senftenberg, Carbohyd. Res. 16:297 (1971).CrossRefGoogle Scholar
  86. 86.
    K. Steller, H. Saito, and S.-I. Hakomori, Determination of aminosugar linkage in glycolipids by methylation: aminosugar linkages of ceramide pentasaccharides of rabbit erthrocytes and of Forssman antigen, Arch. Biochem. Biophys. 155:464 (1973).CrossRefGoogle Scholar
  87. 87.
    S. K. Kundu, R. W. Ledeen, and P. A. J. Gorin, Determination of position of substitution on 2-acetamido-2-deoxy-D-galactosyl residues in glycolipids, Carbohyd. Res. 39:179 (1975).CrossRefGoogle Scholar
  88. 88.
    S. K. Kundu, R. W. Ledeen, and P. A. J. Gorin, Determination of position of substitution on 2-acetamido-2-deoxy-glucosyl residues in glycolipids, Carbohyd. Res. 38:329 (1975).CrossRefGoogle Scholar
  89. 89.
    H. Yamaguchi, T. Ikenaka, and Y. Matsushima, An improved method for gas-liquid chromatographic analysis of Smith degradation products from oligosaccharides, J. Biochem. 68:253 (1970)PubMedGoogle Scholar
  90. 90.
    S. Ando and R. K. Yu, Isolation and structural study of a novel fucose-containing disialoganglioside from human brain, Glycoconjugates Res. 1:79 (1979).Google Scholar
  91. 91.
    L. O. Sillerud, R. K. Yu, and D. E. Schafer, Assignment of the carbon-13 nuclear magnetic resonance spectra of gangliosides GM4, GM3, GM2, GM1, GDla, GDlb, and GTlb, Biochemistry 21:1260 (1982).PubMedCrossRefGoogle Scholar
  92. 92.
    T. A. W. Koerner, Jr., J. H. Prestegard, P. C. Demou, and R. K. Yu, High-resolution proton NMR studies of gangliosides. I. Use of homonuclear two-dimensional spin-echo J-correlated spectroscopy for determination of residue composition and anomeric configurations, Biochemistry 22:2676 (1983).PubMedCrossRefGoogle Scholar
  93. 93.
    R. K. Yu, T. A. W. Koerner, Jr., P. C. Demou, J. N. Scarsdale, and J. H. Prestegard, Recent advances in structural analysis of gangliosides: Primary and secondary structures, This volume (1984).Google Scholar
  94. 94.
    L. O. Sillerud and R. K. Yu, Comparison of the 13C-N.M.R. spectra of ganglioside GMl with those of GMl-oligosaccharide and asialo-GMl, Carbohyd. Res. 113:173 (1983).CrossRefGoogle Scholar
  95. 95.
    R. K. Yu and L. O. Sillerud, Carbon-13 nuclear magnetic resonance studies of hematoside and globoside, Adv. Exp. Med. Biol. 152:41 (1982).PubMedGoogle Scholar
  96. 96.
    S. L. Patt, F. Sauriol, and A. S. Perlin, Determination of the positions of glycosidic linkages from 13C-13C connectivity plots, Carbohyd. Res. 107:C1 (1982).CrossRefGoogle Scholar
  97. 97.
    R. W. Ledeen, New developments in the study of ganglioside structures, Chem. Phys. Lipids 5:205 (1970).PubMedCrossRefGoogle Scholar
  98. 98.
    S. J. Angyal and K. James, Oxidation of carbohydrates with chromium trioxide in acetic acid, Aust. J. Chem. 23:1209 (1970).CrossRefGoogle Scholar
  99. 99.
    M. Oshima and T. Ariga, Analysis of the anomeric configuration of a galactofuranose containing glycolipid from an extreme thermophile, FEBS Lett. 64:440 (1976).PubMedCrossRefGoogle Scholar
  100. 100.
    J. Hoffman, B. Lindberg, and S. Svensson, Determination of the anomeric configuration of sugar residues in acetylated oligo-and polysaccharides by oxidation with chromium trioxide in acetic acid, Acta Chem. Scand. 26:661 (1972).CrossRefGoogle Scholar
  101. 101.
    R. A. Laine and O. Renkonen, Analysis of anomeric configurations in glyceroglycolipids and glycosphingolipids by chromium trioxide oxidation, J. Lipid Res. 16:102 (1975).PubMedGoogle Scholar
  102. 102.
    L. O. Sillerud, J. H. Prestegard, R. K. Yu, D. E. Schafer, and W. H. Konigsberg, Assignments of the 13CNMR spectrum of aqueous gangliosides GMl micelles, Biochemistry 17:2619 (1978).PubMedCrossRefGoogle Scholar
  103. 103.
    T. A. W. Koerner, Jr., L. W. Cary, S.-C. Li, and Y.-T. Li, Carbon-13 NMR spectroscopy of a cerebroside. Proof of the β-pyranosyl structure of D-glucosylceramide, J. Biol. Chem. 254:2325 (1979).Google Scholar
  104. 104.
    T. A. W. Koerner, Jr., L. W. Cary, S.-C. Li, and Y.-T. Li, Carbon-13 NMR spectroscopy of Forssman hapten, Biochem. J. 195:529 (1981).PubMedGoogle Scholar
  105. 105.
    H. A. Nunez and C. C. Sweeley, Carbon-13 nuclear magnetic resonance spectrometry of globotriaosylceramide, J. Lipid Res. 23:863 (1982).PubMedGoogle Scholar
  106. 106.
    P. L. Harris and E. R. Thornton, Carbon-13 and proton nuclear magnetic resonance studies of gangliosides, J. Am. Chem. Soc. 100:6738 (1978).CrossRefGoogle Scholar
  107. 107.
    L. D. Hall, High-resolution nuclear magnetic resonance spectroscopy, in: The Carbohydrates, Chemistry and Biochemistry, W. Pigman, D. Horton and J. D. Wander, eds., Vol. IB, pp. 1299–1326, Academic Press, N.Y. (1981).Google Scholar
  108. 108.
    P. A. J. Gorin, Carbon-13 nuclear magnetic resonance spectroscopy of polysaccharides, Adv. Carbohyd. Chem. Biochem. 38:13 (1981).CrossRefGoogle Scholar
  109. 109.
    K. Bock and H. Thogersen, Nuclear magnetic resonance spectroscopy in the study of mono-and oligosaccharides, in: Annual Reports on NMR Spectroscopy, G. A. Webb, ed., Vol. 13, pp. 1–57, Academic Press, New York, (1982).Google Scholar
  110. 110.
    R. Barker, H. A. Nunez, P. R. Rosevear, and A. S. Serianni, 13C NMR analysis of complex carbohydrates, Methods Enz. 83:58 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Robert K. Yu
    • 1
  1. 1.Department of NeurologyYale University School of MedicineNew HavenUSA

Personalised recommendations