Advertisement

Gangliosides and Disease: A Review

  • Kunihiko Suzuki
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)

Abstract

From the beginning, research on gangliosides has been closely associated with studies of diseases. Although there had been a few articles which may well have described the compounds which we now know as gangliosides,1,2 discovery of gangliosides is justifiably credited to Klenk, who first discovered them in 1935 in the brain of patients with Niemann-Pick disease3 and then in a larger quantity in the brain of Tay-Sachs disease patients.4 Tay-Sachs disease became the first and then the only genetic disorder of abnormal ganglioside metabolism. During the next three decades, fundamental studies of chemistry and metabolism of gangliosides and studies of genetic diseases of ganglioside metabolism advanced hand in hand to the present state of enormous complexity. The synergistic interactions between basic and clinical sciences have proved to be highly beneficial to both sides. We now know several major groups of genetic gangliosidosis of known enzymatic causes and several more of yet to be characterized genetic variants.

Keywords

Tetanus Toxin Subacute Sclerosing Panencephalitis Sandhoff Disease Brain Ganglioside Lafora Disease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Landsteiner and P. A. Levene, On the heterogenetic haptene, Proc. Soc, Exp. Biol. Med, 23:343 (1925).Google Scholar
  2. 2.
    E. Walz, Ueber das Vorkommen von Kerasin in normaler Rindermilz, Z. Physiol. Chenu 166:210 (1927).CrossRefGoogle Scholar
  3. 3.
    E. Klenk, Ueber die Natur der Phophatide und anderer Lipoide im Gehirn und Leber, Z. Physiol. Chenu 235:24 (1935).CrossRefGoogle Scholar
  4. 4.
    E. Klenk, Beiträge zur Chemie der Lipidosen. 3, Niemann-Picksche Krankheit und amaurotische Idiotie, Z. Physiol. Chem. 262:128 (1939).CrossRefGoogle Scholar
  5. 5.
    W. E. van Heyningen, Tentative identification of the tetanus toxin receptor in nervous tissue, J. Gen. Microbiol. 20:310 (1959).Google Scholar
  6. 6.
    W. E. van Heyningen and P. A. Miller, The fixation of tetanus toxin by ganglioside, J. Gen. Microbiol. 24:107 (1961).Google Scholar
  7. 7.
    D. W. Woolley and B. W. Gommi, Serotonin receptors, VII. Activities of various pure gangliosides as the receptors, Proc. Natl. Acad. Sci. USA 53:959 (1965).PubMedCrossRefGoogle Scholar
  8. 8.
    H. G. Hers, Inborn lysosomal disease, Gastroenterology 48:625 (1966).Google Scholar
  9. 9.
    S. Okada and J. S. O’Brien, Tay-Sachs disease: Generalized absence of a beta-D-N-acetylhexosaminidase component, Science 165:698 (1969).PubMedCrossRefGoogle Scholar
  10. 10.
    K. Sandhoff, Variation of β-N-acetylhexosaminidase pattern in Tay-Sachs disease, FEBS Lett. 4:351 (1969).PubMedCrossRefGoogle Scholar
  11. 11.
    K. Suzuki, K. Suzuki, I. Rapin, Y. Suzuki, and N. Ishii, Juvenile GM2-gangliosidosis. Clinical variant of Tay-Sachs disease or a new disease, Neurology 20:190 (1970).PubMedCrossRefGoogle Scholar
  12. 12.
    Y. Suzuki and K. Suzuki, Partial deficiency of hexosaminidase component A in juvenile GM2-gangliosidosis, Neurology 20:848 (1970).PubMedCrossRefGoogle Scholar
  13. 13.
    S.-C. Li, Y. Hirabayashi, and Y.-T. Li, A new variant of type-AB GM2-gangliosidosis, Biochem. Biophys. Res. Commun. 101:479 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    Y. Hirabayashi, Y.-T. Li, and S.-C. Li, The protein activator specific for the enzymatic hydrolysis of GM2-ganglioside in normal human brain and brains of three types of GM2-ganglio-sidosis, J. Neurochem. 40:168 (1983).PubMedCrossRefGoogle Scholar
  15. 15.
    H.-J. Kytzia, U. Hinrichs, I. Maire, K. Suzuki, and K. Sandhoff, Variant of GM2-gangliosidosis with hexosaminidase A having a severely changes substrate specificity, EMBO J. 2:1201 (1983).PubMedGoogle Scholar
  16. 16.
    Y.-T. Li, Y. Hirabayashi, and S.-C. Li, Differentiation of two variants of type-AB GM2-gangliosidosis using chromogenic substrates, Am. J. Human Genet. 35:520 (1983).Google Scholar
  17. 17.
    I. Rapin, K. Suzuki, K. Suzuki, and M. P. Valsamis, Adult (chronic) GM2-gangliosidosis-Atypical spinocerebellar degeneration in a Jewish sibship, Arch. Neurol. 33:120 (1976).PubMedCrossRefGoogle Scholar
  18. 18.
    W. G. Johnson and A. M. Chutorian, Inheritance of the enzyme defect in a new hexosaminidase deficiency disease, Ann. Neurol. 4:399 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    W. G. Johnson, C. S. Cohen, A. F. Miranda, S. P. Waren, and A. M. Chutorian, α-Locus hexosaminidase genetic compound with juvenile gangliosidosis phenotype: Clinical, genetic and biochemical studies, Am. J. Human Genet. 32:508 (1980).Google Scholar
  20. 20.
    R. L. Proia and E. F. Neufeld, Synthesis of β-hexosaminidase in cell-free translation and in intact fibroblasts: An insoluble precursor chain in a rare form of Tay-Sachs disease, Proc. Natl. Acad. Sci. USA 79:6360 (1982).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Okada and J. S. O’Brien, Generalized gangliosidosis: beta-galactosidase deficiency, Science 160:1002 (1968).PubMedCrossRefGoogle Scholar
  22. 22.
    K. Suzuki, Cerebral GMl-gangliosidosis: chemical pathology of visceral organs, Science 159:1471 (1968).PubMedCrossRefGoogle Scholar
  23. 23.
    L. S. Wolfe and N. M. K. Ng Ying Kin, Storage and excretion of oligosaccharides and glycopeptides in the gangliosidosis, in: “Current Trends in Sphingolipidoses and Allied Disorders”, B. W. Volk and L. Schneck, eds., p. 15, Plenum Press, New York (1976).Google Scholar
  24. 24.
    G. Bach, M. Zeigler, T. Schaap, and G. Kohn, Mucolipidosis type IV: Ganglioside sialidase deficiency, Biochem. Biophys. Res. Commun. 90:1341 (1979).PubMedCrossRefGoogle Scholar
  25. 25.
    Y. Ben-Yoseph, T. Momoi, L. C. Hahn, and H. L. Nadler, Cataly-tically defective ganglioside neuraminidase in mucolipidosis IV, Clin. Genet. 21:374 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    L. Caimi, G. Tettamanti, B. Berra, F. O. Sale, C. Borrone, R. Gatti, P. Durand, and J. J. Martin, Mucolipidosis IV, A sialidosis due to ganglioside sialidase deficiency, J. Inherit. Metab. Dis. 5:218 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    E. Conzelmann, K. Sandhoff, H. Nehrkorn, B. Geiger, and R. Arnon, Purification, biochemical and immunological characterization of hexosaminidase A from variant AB of infantile GM2-gangliosidosis, Europ. J. Biochem. 84:27 (1978).PubMedCrossRefGoogle Scholar
  28. 28.
    E. Conzelmann and K. Sandhoff, AB variant of infantile GM2-gangliosidosis: Deficiency of a factor necessary for stimulation of hexosaminidase A-catalyzed degradation of ganglioside GM2 and glycolipid GA2, Proc. Natl. Acad. Sci. USA 75:3979 (1978).PubMedCrossRefGoogle Scholar
  29. 29.
    J. Tanaka, J. H. Garcia, S. R. Max, J. E. Viloria, Y. Kamijo, N. K. McLaren, M. Cornblath, and R. O. Brady, Cerebral spongi-ness and GM3-gangliosidosis: Ultrastructure and probable pathogenesis, J. Neuropath. Exp. Neurol. 34:249 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    S. R. Max, N. K. McLaren, R. O. Brady, R. M. Bradley, M. B. Rennels, J. Tanaka, J. H. Garcia, and M. Cornblath, GM3 (hematoside) sphingolipodystrophy, N. Engl. J. Med. 291:929 (1974).PubMedCrossRefGoogle Scholar
  31. 31.
    R. O. Brady, Inherited metabolic diseases and pathogenesis of mental retardation, Ann. Biol. Clin. 36:113 (1978).Google Scholar
  32. 32.
    H. J. Baker, J. A. Mole, J. R. Lindsey, and R. M. Creel, Animal models of human ganglioside storage diseases, Fed. Proc. 35:1193 (1976).PubMedGoogle Scholar
  33. 33.
    K. Suzuki, “Authentic animal models” for biochemical studies of human genetic diseases, in: Proc. 4th Int. Symp. Developmental Disabilities, Y. Suzuki, ed., University of Tokyo Press, Tokyo, in press.Google Scholar
  34. 34.
    S. Kamoshita, A. M. Aron, K. Suzuki, and K. Suzuki, Infantile Niemann-Pick disease: A chemical study with isolation and characterization of membranous cytoplasmic bodies and myelin, Am. J. Dis. Child. 117:379 (1969).PubMedGoogle Scholar
  35. 35.
    K. Suzuki, Ganglioside patterns of normal and pathological brains, in: “Inborn Disorders of Sphingolipid Metabolism”, S. M. Aronson and B. W. Volk, eds., p. 215, Pergamon Press, Oxford, (1966).Google Scholar
  36. 36.
    P. E. Duffy, M. Kornfeld, and K. Suzuki, Neurovisceral storage disease with curvilinear bodies, J. Neuropath. Exp. Neurol. 27:351 (1968).CrossRefGoogle Scholar
  37. 37.
    R. Janeway, J. R. Ravens, L. A. Pearch, L. Odor, and K. Suzuki, Progressive myoclonus epilepsy with Lafora inclusion bodies. I. Clinical, genetic, histopathologic and biochemical aspects, Arch. Neurol. 16:565 (1967).PubMedCrossRefGoogle Scholar
  38. 38.
    W. T. Norton, S. E. Poduslo, and K. Suzuki, Subacute sclerosing leukoencephalitis II. Chemical studies including abnormal myelin and an abnormal ganglioside pattern, J. Neuropath. Exp. Neurol. 25:5826 (1966).CrossRefGoogle Scholar
  39. 39.
    Y. Suzuki, S. H. Tucker, L. B. Rorke, and K. Suzuki, Ultra-structural and biochemical studies of Schilder’s disease II. Biochemistry, J. Neuropath. Exp. Neurol. 29:405 (1970).PubMedCrossRefGoogle Scholar
  40. 40.
    M. Igarashi, D. Belchis, and K. Suzuki, Brain gangliosides in adrenoleukodystrophy, J. Neurochem. 27:327 (1976).CrossRefGoogle Scholar
  41. 41.
    R. K. Yu, R. W. Ledeen, and L. Eng, Ganglioside abnormalities in multiple sclerosis, J. Neurochem. 23:169 (1974).PubMedCrossRefGoogle Scholar
  42. 42.
    Y. Nagai, T. Momoi, M. Saito, E. Mitsuzawa, and S. Ohtani, Ganglioside syndrome, a new autoimmune neurologic disorder, experimentally induced with brain gangliosides, Neurosci. Lett. 2:107 (1976).PubMedCrossRefGoogle Scholar
  43. 43.
    G. Konat, H. Offner, V. Lev-Ram, O. Cohen, M. Schwartz, I. R. Cohen, and B. Sela, Abnormalities in brain myelin of rabbits with experimental autoimmune multiple sclerosis-like disease induced by immunization to gangliosides, Acta Neurol. Scand. 66:568 (1982).PubMedCrossRefGoogle Scholar
  44. 44.
    S. E. Karpiak, L. Graf, and M. M. Rapport, Antiserum to brain gangliosides produces recurrent epileptiform activity, Science 194:735 (1976).PubMedCrossRefGoogle Scholar
  45. 45.
    S. E. Karpiak, L. Graf, and M. M. Rapport, Antibodies to GM1 ganglioside inhibit a learned avoidance response, Brain Res. 151:637 (1978).PubMedCrossRefGoogle Scholar
  46. 46.
    A. Gorio, G. Carmignoto, L. Facci, and M. Finesso, Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth, Brain Res. 197:236 (1980).PubMedCrossRefGoogle Scholar
  47. 47.
    M. M. Rapport and A. Gorio, (eds.), Gangliosides in Neurological and Neuromuscular Function, Development, and Repair, Raven Press, New York (1981).Google Scholar
  48. 48.
    J. R. Sparrow and B. Grafstein, Sciatic nerve regeneration in ganglioside-treated rats, Exp. Neurol. 77:230 (1982).PubMedCrossRefGoogle Scholar
  49. 49.
    A. Gorio, P. Marini, and R. Zanoni, Muscle reinnervation — III. Motoneuron sprouting capacity, enhancement by exogenous gangliosides, Neuroscience 8:417 (1983).PubMedCrossRefGoogle Scholar
  50. 50.
    F. Norido, R. Canella, and A. Gorio, Ganglioside treatment of neuropathy in diabetic mice, Muscle and Nerve 5:107 (1982).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Kunihiko Suzuki
    • 1
  1. 1.The Saul R. Korey Department of Neurology, Department of Neurosciencethe R. F. Kennedy Center for Research in Mental Retardation and Human Development Albert Einstein College of MedicineBronxUSA

Personalised recommendations