Advertisement

Use of Cell Cultures in Ganglioside Research

  • Paul Mandel
  • Henri Dreyfus
  • Yoshiki Matsui
  • Gerard Rebel
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)

Abstract

Gangliosides are present in a variety of cell types: one might thus expect that they are involved in some common functions. In brain the existence of a great variety of gangliosides may suggest specific functions due to their occurrence in different cell populations and structures. Moreover, gangliosides are membrane constituents, partly embedded in the bilayer of the membrane and partly exposed to the external environment with negatively charged reactive polysaccharide chains.

Keywords

Glial Cell Nerve Cell Culture Clonal Cell Line Glial Cell Culture Major Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Holmgren, H. Helwing, P. Fredman, O. Strannegard, and L. Svennerholm, Gangliosides as receptors for bacterial toxins and Sendai virus, in: “Structure and Function of Gangliosides,” L. Svennerholm, P. Mandel, H. Dreyfus, and P. F. Urban, eds., Plenum Press, New York (1980).Google Scholar
  2. 2.
    W. Seifert, Gangliosides in nerve cell cultures, in: “Gangliosides in Neurological and Neuromuscular Function, Development and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York (1981).Google Scholar
  3. 3.
    B. D. Schur and S. Roth, Cell surface glycosyltransferases, Biochim. Biophys. Acta 415:473 (1975).Google Scholar
  4. 4.
    L. Svennerholm, Gangliosides and synaptic transmission, in: “Structure and Function of Gangliosides,” L. Svennerholm, P. Mandel, H. Dreyfus, and P. F. Urban, eds., Plenum Press, New York (1980).Google Scholar
  5. 5.
    H. Rahmann, Functional implication of gangliosides in synaptic transmission, Neurochem. Int. 5:549 (1983).CrossRefGoogle Scholar
  6. 6.
    R. W. Ledeen, Ganglioside structures and distribution: are they localized at the nerve ending?, J. Supramol. Struct. 8:1 (1978).PubMedCrossRefGoogle Scholar
  7. 7.
    K. Sandhoff, K. Harzer, W. Waessle, and H. Jatzkewitz, Enzyme alterations and lipid storage in three variants of Tay-Sachs disease, J. Neurochem. 18:2469 (1971).PubMedCrossRefGoogle Scholar
  8. 8.
    P. H. Fishman and R. O. Brady, Biosynthesis and function of gangliosides, Science 194:906 (1976).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Matsui, D. Lombard, B. Hoflack, S. Harth, R. Massarelli, P. Mandel, and H. Dreyfus, Ectoglycosyltransferase activities at the surface of cultured neurons, Biochem. Biophys. Res. Commun. 113:446 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    H. Dreyfus, J. C. Louis, S. Harth, and P. Mandel, Gangliosides in cultured neurons, Neuroscience 5:1647 (1980).PubMedCrossRefGoogle Scholar
  11. 11.
    E. Yavin and Z. Yavin, Ganglioside profiles during neural tissue development, Develop. Neurosci. 2:25 (1979).CrossRefGoogle Scholar
  12. 12.
    G. Rebel, M. Mersel, and P. Mandel, in preparation.Google Scholar
  13. 13.
    L. M. Hoffman, S. E. Brooks, and L. Schneck, Human fetal brain cells in culture, Biochim. Biophys. Acta 665:359 (1981).PubMedGoogle Scholar
  14. 14.
    H. Dreyfus, S. Harth, R. Massarelli, and J. C. Louis, Mechanisms of differentiation in cultured neurons: involvement of gangliosides, in: “Gangliosides in Neurological and Neuromuscular Function, Development and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York (1981).Google Scholar
  15. 15.
    P. Mandel, H. Dreyfus, A. N. K. Yusufi, L. Sarlieve, J. Robert, N. Neskovic, S. Harth, and G. Rebel, Neuronal and glial cell cultures, a tool for investigation of ganglioside function, in: “Structure and Function of Gangliosides,” L. Svennerholm, R. Mandel, H. Dreyfus, and P. F. Urban, eds., Plenum Press, New York (1980).Google Scholar
  16. 16.
    S. R. Mack, S. Szuchet, and G. Dawson, Synthesis of gangliosides by cultured oligodendrocytes, J. Neurosci. Res. 6:361 (1981).PubMedCrossRefGoogle Scholar
  17. 17.
    J. Ciesielski-Treska, J. Robert, G. Rebel, and P. Mandel, Gangliosides of active and inactive neuroblastoma clones, Differentiation 8:31 (1977).PubMedCrossRefGoogle Scholar
  18. 18.
    G. Yogeeswaran, R. K. Murray, M. L. Pearson, B. D. Sanwal, F. A. McMorris, and F. H. Ruddle, Glycosphingolipids of clonal lines of mouse neuroblastoma and neuroblastoma X L cell hybrids, J. Biol. Chem. 248:1231 (1972).Google Scholar
  19. 19.
    G. Dawson, S. F. Kemp, A. C. Stoolmiller, and A. Dorfman, Biosynthesis of glycosphingolipids by mouse neuroblastoma (NB41A), rat glia (RGC-6) and human glia (CHB-4) in cell culture, Biochem. Biophys. Res. Commun. 44:687 (1971).PubMedCrossRefGoogle Scholar
  20. 20.
    S. F. Kemp and A. C. Stoolmiller, Studies on the biosynthesis of glycosphingolipids in cultured mouse neuroblastoma cells: characterization and acceptor specificities of N-acetylneuraminyl and N-acetylgalactosaminyltransferases, J. Neurochem. 27:723 (1976).PubMedCrossRefGoogle Scholar
  21. 21.
    S. Hakomori, Glycosphingolipids in cellular interaction, differentiation and oncogenesis, Ann. Rev. Biochem. 50:733 (1981).PubMedCrossRefGoogle Scholar
  22. 22.
    F. A. Cumar, R. O. Brady, E. H. Kolodny, V. W. McFarland, and P. T. Mora, Enzymatic block in the synthesis of gangliosides in DNA virus-transformed tumorigenic mouse cell lines, Proc. Natl. Acad. Sci. USA 67:757 (1970).PubMedCrossRefGoogle Scholar
  23. 23.
    P. H. Fishman, R. O. Brady, R. M. Bradley, S. A. Aaronson, and G. J. Torado, Absence of a specific ganglioside galactosyl-transferase in mouse cells transformed by murine sarcoma virus, Proc. Natl. Acad. Sci. USA 71:298 (1974).PubMedCrossRefGoogle Scholar
  24. 24.
    W. Dimpfel, W. Möller, and U. Mengs, Ganglioside-induced neurite formation in cultured neuroblastoma cells, in: “Gangliosides in Neurological and Neuromuscular Function, Development and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York (1981).Google Scholar
  25. 25.
    P. Mandel, J. Ciesieski-Treska, and M. Sensenbrenner, Neurons in vitro, in: “Molecular and Functional Neurobiology,” W. H. Gispen, ed., Elsevier, Amsterdam (1976).Google Scholar
  26. 26.
    W. Dimpfel, R. T. C. Huang, and E. Habermann, Gangliosides in nervous tissue cultures and binding of 125I-labelled tetanus toxin, a neuronal marker, J. Neurochem. 29:329 (1977).PubMedCrossRefGoogle Scholar
  27. 27.
    J. Robert, G. Rebel, and P. Mandel, Glycosphingolipids from cultured astroblasts, J. Lipid Res. 18:517 (1977).PubMedGoogle Scholar
  28. 28.
    G. Rebel, J. Robert, and P. Mandel, Glycolipids and cell differentiation, in: “Structure and Function of Gangliosides,” L. Svennerholm, P. Mandel, H. Dreyfus, and P. F. Urban, eds., Plenum Press, New York (1980).Google Scholar
  29. 29.
    W. Seifert, Gangliosides in nerve cell cultures, in: “Gangliosides in Neurological and Neuromuscular Function, Development and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York (1981).Google Scholar
  30. 30.
    S. Roth, E. J. McGuire, and S. Roseman, Evidence for cell-surface glycosyltransferases, J. Cell Biol. 51:536 (1971).PubMedCrossRefGoogle Scholar
  31. 31.
    P. Stoffyn and A. Stoffyn, Biosynthesis in vitro of mono-and di-sialogangliosides from gangliotetraosylceramide by cultured cell lines and young rat brain, Carbohydrate Res. 78:327 (1980).CrossRefGoogle Scholar
  32. 32.
    P. W. Robbins and I. MacPherson, Control of glycolipid synthesis in a cultured hamster cell line, Nature 229:569 (1971).PubMedCrossRefGoogle Scholar
  33. 33.
    J. R. Moskal, D. A. Gardner, and S. Basu, Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in neuroblastoma cells, Biochem. Biophys. Res. Commun. 61:751 (1974).PubMedCrossRefGoogle Scholar
  34. 34.
    H. Dreyfus, Y. Matsui, and P. Mandel, Ectogylcosyltransferase activities of astrocytes and gliomas cells, in preparation.Google Scholar
  35. 35.
    J. C. Louis, B. Pettman, J. Courageot, J. F. Rumigny, P. Mandel, and M. Sensenbrenner, Developmental changes in cultured neurons from chick embryo cerebral hemispheres, Exp. Brain Res. 42:63 (1981).PubMedCrossRefGoogle Scholar
  36. 36.
    G. Dawson, R. McLawhon, and R. J. Miller, Opiates and enkephalins inhibit synthesis of gangliosides and membrane glycoproteins in mouse neuroblastoma cell line N4TG1, Proc. Natl. Acad. Sci. USA 76:605 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Paul Mandel
    • 1
  • Henri Dreyfus
    • 1
  • Yoshiki Matsui
    • 1
  • Gerard Rebel
    • 1
  1. 1.Centre de Neurochimie du CNRS 5rue Blaise PascalStrasbourg CedexFrance

Personalised recommendations