Advertisement

Gangliosides as Modulators of the Coupling of Neurotransmitters to Adenylate Cyclase

  • Glyn Dawson
  • Elizabeth Berry-Kravis
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)

Abstract

Polysialogangliosides are characteristic components of nervous tissue, enriched in neurons, but little is known of their biological role in the CNS. Since the oligosaccharide moiety in GM1 ganglioside has been shown to confer binding specificity towards cholera toxin,1 this has become the model for gangliosides to act as receptors for a wide variety of biologically active compounds including hormones and neurotransmitters. However, in most of these cases the receptor has been subsequently characterized as a protein and the binding to ganglioside has turned out to be of rather low affinity and specificity. Examples of this are the thyrotropin2 and opiate receptors.3 Thus the precise function of gangliosides in the CNS remains problematical but of intense interest.

Keywords

Adenylate Cyclase Gauche Disease Brain Ganglioside cAMP Synthesis Oligosaccharide Moiety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Cuatrecasas, Interaction of vibrio cholerae enterotoxin with cell membranes Biochemistry 12:3547 (1973).PubMedCrossRefGoogle Scholar
  2. 2.
    S. K. Becker, R. O. Brady, and P. H. Fishman, Reevaluation of the role of gangliosides in the binding and action of the role of gangliosides in the binding and action of thyrotropin, Proc. Natl. Acad. Sci. USA 78:4848 (1981).CrossRefGoogle Scholar
  3. 3.
    R. W. McLawhon, G. S. Schoon, and G. Dawson, Glycolipids and opiate action, Europ. J. Cell Biol. 25:353 (1981).PubMedGoogle Scholar
  4. 4.
    B. Maggio, F. A. Cumar, and R. Caputto, Molecular behavior of glycosphingolipids in interfaces, Biochim. Biophys. Acta 650:69 (1981).PubMedGoogle Scholar
  5. 5.
    W. Gielen, Uber die Funktion von Gangliosiden. Ein serotonin und Ca++ receptor, Z. Naturforsch. (B) 23b:117 (1981).Google Scholar
  6. 6.
    H. C. Price, C. Byard, W. Sims, and R. Wilson, Gangliosides and other lipid micelles. A study of amine binding by dialysis/fluorescence method, Neurochem. Res. 4:63 (1979).PubMedCrossRefGoogle Scholar
  7. 7.
    E. Berry Kravis and G. Dawson, Characterization of an adenylate cyclase-linked serotonin (5HT1) receptor in a neuroblastoma x brain expiant hybrid cell line (NCB-20), J. Neurochem, 40:977 (1983).CrossRefGoogle Scholar
  8. 8.
    J. McDermott, H. Higashida, S. Wilson, H. Matsuzawa, J. Minna, and M. Nirenberg, Adenylate cyclase and acetylcholine release regulated by separate serotonin receptors of somatic cell hybrids, Proc. Natl. Acad. Sci. USA 76:1135 (1979).CrossRefGoogle Scholar
  9. 9.
    T. B. Rogers and S. H. Snyder, High affinity binding of tetanus toxin to mammalian brain membranes, J. Biol. Chem. 256:2402 (1981).PubMedGoogle Scholar
  10. 10.
    Z. Yavin, E. Yavin, and L. Kohn, Sequestration of tetanus toxin in developing neuronal cell cultures, J. Neurosci Res. 7:267 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    G. D. Hunter, V. M. Wiegant, and A. J. Dunn, Interspecies comparison of brain ganglioside patterns studied by two-dimensional thin-layer chromatography, J. Neurochem. 37:1025 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    R. W. McLawhon, G. S. Schoon, and G. Dawson, Possible role of cyclic AMP in the receptor-mediated regulation of glycosyl-transferase activities in neurotumor cell lines, J. Neurochem. 37:132 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    S. K. Sharma, W. A. Klee, and M. Nirenberg, Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance, Proc. Natl. Acad. Sci. USA 72:3092 (1975).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Dawson, R. W. McLawhon, and R. J. Miller, Inhibition of sialoglycosphingolipid (ganglioside) biosynthesis in mouse clonal lines N4TG1 and NG108-15 by-endorphin, enkephalins and opiates, J. Biol. Chem. 255:129 (1980).PubMedGoogle Scholar
  15. 15.
    G. Toffano, D. Benvegnu, A. C. Bonetti, L. Facci, A. Leon, P. Orlando, R. Ghidoni, and G. Tettamanti, Interactions of GM1 ganglioside with crude rat brain neuronal membranes, J. Neurochem. 35:861 (1980).PubMedCrossRefGoogle Scholar
  16. 16.
    D. W. Woolley, and B. W. Gommi, Serotonin receptors-VII. Activities of various pure gangliosides as the receptors, Proc. Natl. Acad. Sci. USA 53:959 (1965).PubMedCrossRefGoogle Scholar
  17. 17.
    H. Tamir, W. Brunner, D. Casper, and M. M. Rapport, Enhancement by gangliosides of the binding of serotonin to serotonin binding protein, J. Neurochem. 34:1719 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    R. W. McLawhon, J. C. Ellory, and G. Dawson, Molecular size of opiate (enkephalin) receptors in neuroblastoma — glioma hybrid cells as determined by radiation inactivation analysis, J. Biol. Chem. 258:2102 (1983).PubMedGoogle Scholar
  19. 19.
    E. Hanski, P. C. Sternweis, J. K. Worthup, A. W. Dromerick, and A. G. Gilman, The regulatory component of adenylate cyclase, J. Biol. Chem. 256:12911 (1981).PubMedGoogle Scholar
  20. 20.
    G. Dawson, B. C. P. Kwok, M. Nishigaki, and B. W. Shen, Role of serum lipoproteins in the pathogenesis of Gaucher Disease, in: “Gaucher Disease,” R. J. Desnick, J. Grabowski and S. Gatt, eds., Alan R. Liss, Inc., N.Y. pp. 253–265 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Glyn Dawson
    • 1
  • Elizabeth Berry-Kravis
    • 1
  1. 1.Depts. Biochemistry and Pediatrics, Joseph P. Kennedy Jr. Mental Retardation Research CenterUniv. of ChicagoChicagoUSA

Personalised recommendations