Advertisement

Phylogeny and Ontogeny of Vertebrate Brain Gangliosides

  • Louis Neal Irwin
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)

Abstract

As methodological improvements disclose an increasingly complex array of gangliosides in all brain tissues examined, the quest for meaningful generalizations about the biological functions and biomedical potential of these compounds becomes more formidable. A useful starting point, however, is the observation that ganglioside patterns vary phylogenetically and are developmentally regulated, thus the particular pattern of gangliosides found in the nervous system of any vertebrate is dependent on both the evolutionary history and developmental state of that animal. The aim of this chapter is to briefly summarize what is known about phylogenetic variations and developmental changes in vertebrate brain gangliosides, to explore the relationships between ganglioside phylogeny and ontogeny, and to discuss the implications of this perspective on possible biological roles for gangliosides in neural tissue.

Keywords

Early Developmental Stage Phylogenetic Variation Sialic Acid Residue Garter Snake Rana Pipiens 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. E. Vaskovsky, E. Y. Kostetsky, V. I. Svetashev, I. G. Zhukova, and G. P. Smirnova, Comp. Biochem. Physiol. 34:163 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    E. G. Trams and C. J. Lauter, Biochim. Biophys. Acta 60:350 (1962).PubMedCrossRefGoogle Scholar
  3. 3.
    N. F. Avrova, J. Neurochem. 18:667 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    H. Rahmann and R. Hilbig, J. Comp. Physiol. 151:215 (1983).Google Scholar
  5. 5.
    N. F. Avrova, Y.-T. Li, E. L. Obukhova, J. Neurochem. 32:1807 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    E. M. Kreps, Comp. Biochem. Physiol. 68B:363 (1981).Google Scholar
  7. 7.
    I. Ishizuka, M. Kloppenburg, and H. Wiegandt, Biochim. Biophys. Acta 210:299 (1970).PubMedGoogle Scholar
  8. 8.
    R. H. McCluer and B. W. Argranoff, J. Neurochem. 19:2307 (1972).PubMedCrossRefGoogle Scholar
  9. 9.
    E. M. Kreps et al., Comp. Biochem. Physiol. 52B:283 (1975).Google Scholar
  10. 10.
    R. K. Yu and S. Ando, Adv. Exp. Med. Biol. 125:33 (1980).PubMedGoogle Scholar
  11. 11.
    J. Haverkamp, R. W. Veh, M. Sander, R. Schauer, J. P. Kammerling, and G. F. Vliegenthart, Hoppe-Seyler’s Z. Physiol. Chem. 358:1609 (1977).PubMedCrossRefGoogle Scholar
  12. 12.
    R. Hilbig and H. Rahmann, J. Neurochem. 34:236 (1980).PubMedCrossRefGoogle Scholar
  13. 13.
    L. Svennerholm, J. Lipid Res. 5:145 (1978).Google Scholar
  14. 14.
    L. N. Irwin and C. C. Irwin, Comp. Biochem. Physiol. 64B:121 (1979).Google Scholar
  15. 15.
    G. D. Hunter, V. M. Wiegant, and A. J. Dunn, J. Neurochem. 37:1025 (1981).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Ohashi, Adv. Exp. Med. Biol. 152:47 (1982).Google Scholar
  17. 17.
    L. N. Irwin, Biochem. Syst. Ecol. 10:257 (1982).CrossRefGoogle Scholar
  18. 18.
    L. N. Irwin and K. Schwartz, Comp. Biochem. Physiol. (in press).Google Scholar
  19. 19.
    N. F. Avrova, Zhur. Evol. Biokh. Fisiol. 4:128 (1968).Google Scholar
  20. 20.
    R. Hilbig, H. Rosner, and H. Rahmann, Comp. Biochem. Physiol. 68B:301 (1981).Google Scholar
  21. 21.
    P.-F. Urban, S. Edel-Harth, and H. L. Dreyfus, Exp. Eye Res. 20:397 (1975).PubMedCrossRefGoogle Scholar
  22. 22.
    H. C. Price and R. K. Yu, Comp. Biochem. Physiol. 54B:451 (1976).Google Scholar
  23. 23.
    G. D. Hunter, L. N. Irwin, and R. H. McCluer, presented at Satellite Meeting on “Ganglioside Structure, Function and Biomedical Potential”, Parksville, B. C., 6 July 1983.Google Scholar
  24. 24.
    A. Reglero, J. Garcia-Alonso, and J. A. Cabezas, J. Neurochem. 34:744 (1980).PubMedCrossRefGoogle Scholar
  25. 25.
    H. Dreyfus, S. Harth, A. Giulani-Debernardi, M. Roos, G. Mack, and P. Mandel, Neurochem. Res. 7:477 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Breer, Life Sci. 16:1459 (1975).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Rahmann, R. Hilbig, W. Probst, and M. Muhleisen, J. Therm. Biol. 8:107 (1983).CrossRefGoogle Scholar
  28. 28.
    L. N. Irwin and K. Loehr, Soc. Neurosci. Abstr. 8:694 (1982).Google Scholar
  29. 29.
    H. Breer and H. Rahmann, Roux’s Arch. Dev. Biol. 181:65 (1977).Google Scholar
  30. 30.
    J. A. Yiamouyiannis and J. A. Dain, J. Neurochem. 15:673 (1968).PubMedCrossRefGoogle Scholar
  31. 31.
    L. N. Irwin and G. D. Hunter, submitted to Roux’s Arch. Dev. Biol., Aug. 1983.Google Scholar
  32. 32.
    O. W. Garrigan and E. Chargaff, Biochim. Biophys. Acta 70:452 (1963).PubMedCrossRefGoogle Scholar
  33. 33.
    C.-L. Schendgrund and A. Rosenberg, Biochem. (Easton) 10:2424 (1971).CrossRefGoogle Scholar
  34. 34.
    D. B. Gray and L. N. Irwin, J. Neurochem. 4:487 (1973).Google Scholar
  35. 35.
    E. L. Engel, J. G. Wood, and F. I. Byrd, J. Neurobiol. 10:429 (1979).PubMedCrossRefGoogle Scholar
  36. 36.
    L. N. Irwin and C. C. Irwin, Dev. Neurosci. 2:129 (1979).CrossRefGoogle Scholar
  37. 37.
    P. Panzetta, H. J. Maccioni, and R. Caputto, J. Neurochem. 35:100 (1980).PubMedCrossRefGoogle Scholar
  38. 38.
    H. Rösner, J. Neurochem. 24:815 (1975).PubMedCrossRefGoogle Scholar
  39. 39.
    L. N. Irwin, H. Chen, and R. A. Barraco, Dev. Biol. 49:29 (1976).PubMedCrossRefGoogle Scholar
  40. 40.
    H. Rösner, Roux’s Arch. Dev. Biol. 188:205 (1980).Google Scholar
  41. 41.
    G. D. Hunter and A. Dunn, presented at Meeting of Intl. Sco. Neurochem., Vancouver, B. C., 15 July 1983.Google Scholar
  42. 42.
    K. Suzuki, J. Neurochem. 12:969 (1965).CrossRefGoogle Scholar
  43. 43.
    M. T. Vanier, M. Holm, R. Ohman, and L. Svennerholm, J. Neurochem. 18:581 (1971).PubMedCrossRefGoogle Scholar
  44. 44.
    C. Alling and I. Karlsson, J. Neurochem. 21:1051 (1973).PubMedCrossRefGoogle Scholar
  45. 45.
    A. Merat and J. W. T. Dickerson, J. Neurochem. 20:873 (1973).PubMedCrossRefGoogle Scholar
  46. 46.
    K. Suzuki, J. F. Poduslo, and S. E. Poduslo, Biochim. Biophys. Acta 152:576 (1968).PubMedGoogle Scholar
  47. 47.
    R. K. Yu and K. Iqbal, J. Neurochem. 32:293 (1979).PubMedCrossRefGoogle Scholar
  48. 48.
    H. K. M. Yusuf and J. W. T. Dickerson, Biochem. J. 174:655 (1978).PubMedGoogle Scholar
  49. 49.
    K. H. Chou, C. E. Nolan, and F. B. Jungalwala, J. Neurochem. 39:1547 (1982).PubMedCrossRefGoogle Scholar
  50. 50.
    M. Holm, J.-E. Mansson, M.-T. Vanier, and L. Svennerholm, Biochim. Biophys. Acta 280:356 (1972).PubMedGoogle Scholar
  51. 51.
    G. Tettamanti, in: “Chemistry and Brain Development,” R. Paoletti and A. N. Davison, eds., Plenum, New York (1971).Google Scholar
  52. 52.
    E. Yavin and Z. Yavin, Dev. Neurosci. 2:25 (1979).CrossRefGoogle Scholar
  53. 53.
    L. N. Irwin, D. B. Michael, and C. C. Irwin, J. Neurochem. 34:1527 (1980).PubMedCrossRefGoogle Scholar
  54. 54.
    R. Hilbig, H. Rösner, G. Merz, K. Segler-Stahl, and H. Rahmann, Roux’s Arch. Dev. Biol. 191: 281 (1982)Google Scholar
  55. 55.
    M. J. Katz, R. J. Lasek, and I. R. Kaiserman-Abramof, Proc. Natl. Acad. Sci. USA 78:397 (1981).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Louis Neal Irwin
    • 1
  1. 1.Department of BiologySimmons CollegeBostonUSA

Personalised recommendations