Ganglioside Alterations in the Genetically-Determined Hypertrophic Neuropathy of the Murine Neurological Mutant Trembler

  • Marie-Luce Harpin
  • Jacques Portoukalian
  • Bernard Zalc
  • Nicole Baumann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


Hypertrophic neuropathy is a standard pathological reaction of peripheral nerve that occurs in different diseases. On transverse sections, it is characterized by onion-bulb disposition of proliferated Schwann cells around nerve fibers. These hypertrophic onion-bulb changes were first recognized in the hereditary neuropathies. Until recently, they were considered specific for Dejerine-Sottas disease, but from clinical and experimental studies they are known to be the non-specific consequence of Schwann cell proliferation resulting from repeated segmental demyelination and remyelination.1


Peripheral Nerve Sciatic Nerve Schwann Cell Neuraminic Acid Hereditary Neuropathy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.K. Thomas, Hereditary Neuropathies, Trends Neurosci. 4:X (1981).Google Scholar
  2. 2.
    D. Falconer, Two new mutants, Trembler and reeler, with neurological action in the house mouse (Mus Musculus L), J. Genet. 50:192 (1951).CrossRefGoogle Scholar
  3. 3.
    M. Ayers, R. Anderson, Onion bulb neuropathy in the Trembler mouse: a model of hypertrophic interstitial neuropathy (Dejerine-Sottas) in man, Acta Neuropath. (Berl.) 25:54 (1973).CrossRefGoogle Scholar
  4. 4.
    P. A. Low, J. G. McLeod, Hereditary demyelinating neuropathy in the Trembler mouse, J. Neurol. Sci. 26:565 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    A. J. Aguayo, M. Attiwell, J. Trecarten, S. Perkins, G. M. Bray, Abnormal myelination in transplanted Trembler mouse Schwann cells, Nature, Lon. 265:73 (1977).CrossRefGoogle Scholar
  6. 6.
    C. S. Perkins, A. J. Aguayo and G. M. Bray, Schwann cell multiplication in Trembler mice, Neuropath. and Applied Neurobiol. 7:115 (1981).CrossRefGoogle Scholar
  7. 7.
    C. S. Perkins, A. J. Aguayo and G. M. Bray, Behavior of Schwann cells from Trembler mouse unmyelinated fibers transplanted into myelinated nerves, Exp. Neurobiol. 71:515 (1981).CrossRefGoogle Scholar
  8. 8.
    A. J. Yates and J. R. Wherrett, Changes in the sciatic nerve of the rabbit and its tissue constituents during development, J. Neurochem. 23:993 (1974).PubMedCrossRefGoogle Scholar
  9. 9.
    F. Klein and P. Mandel, Gangliosides of the peripheral nervous system of the rat, Life Sci. 16:751 (1975).PubMedCrossRefGoogle Scholar
  10. 10.
    J. W. Fong, R. W. Ledeen, S. K. Kundu and S. W. Brostoff, Gangliosides of peripheral nerve myelin, J. Neurochem. 26:157 (1976).PubMedGoogle Scholar
  11. 11.
    A. J. Yates and D. K. Thompson, Ganglioside composition of peripheral nerve undergoing Wallerian degeneration, J. Neurochem. 30:1649 (1978).PubMedCrossRefGoogle Scholar
  12. 12.
    K. H. Chou, C. E. Nolan and F. B. Jungalwala, Composition and metabolism of gangliosides in rat peripheral nervous system during development, J. Neurochem. 39:1547 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    J. H. Hofteig, J. R. Mendell and A. J. Yates, Chemical and morphological studies on garfish peripheral nerves, J. Comp. Neur. 198:265 (1981).PubMedCrossRefGoogle Scholar
  14. 14.
    J. I. Morgan and W. Seifert, Growth factors and gangliosides: a possible new perspective in neuronal growth control, J. Supramol. Struct. 10:111 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    D. P. Purpura and H. J. Baker, Neurite induction in mature cortical neurons in feline GM1-ganglioside storage disease, Nature, 266:553 (1977).PubMedCrossRefGoogle Scholar
  16. 16.
    M. Willinger and M. Schachner, GM1 gangliosie as a marker for neuronal differentiation in mouse cerebellum, Dev. Biol. 74:101 (1980).PubMedCrossRefGoogle Scholar
  17. 17.
    J. J. Hauw, S. Fenelon, J. M. Boutry and R. Escourolle, Effet des gangliosides sur la croissance de ganglion spinal de cobaye en culture in vitro. Resultats preliminaires concernant une preparation de gangliosides de cortex cerebral de boeuf, C. R. Acad. Sci. 292:569 (1981).Google Scholar
  18. 18.
    F. J. Roisen, H. Bertfeld, R. Nagele and G. Yorke, Ganglioside stimulation of axonal sprouting in vitro, Science, 214:577 (1981).PubMedCrossRefGoogle Scholar
  19. 19.
    M. M. Rapport, A. Gorio, eds., Gangliosides in Neurological and Neuromuscular function, Development and Repair, Raven Press, New York (1981).Google Scholar
  20. 20.
    P. Mandel, P. Dreyfus, H. Yusufi, AN. N. K. Sarlieve, L. Robert, J. Neskovic, N. Harth, S. and G. Rebel, Neuronal and glial cell cultures, a tool for investigation of ganglioside function, Adv. Exp. Med. Biol. 125:515 (1980).PubMedGoogle Scholar
  21. 21.
    M. L. Harpin, J. Portoukalian and N. Baumann, Modifications of ganglioside composition in peripheral nerve of myelin-deficient Trembler mutant mouse, Neurochem. Res. 7:1367 (1982).PubMedCrossRefGoogle Scholar
  22. 22.
    F. Lachapelle, B. Zalc, N. Baumann and J. L. Guenet, “Production and use of genetically uniform dysmyelinating mutants of the mouse,” in: Neurological Mutations Affecting Myelination, N. Baumann, ed., Elsevier/North-Holland, Amsterdam, (1980).Google Scholar
  23. 23.
    S. Pollet, S. Ermidou, F. Le Saux, M. Monge and N. Baumann, Microanalysis of brain lipids: multiple two-dimensional thin-layer chromatography, J. Lipid Res. 19:916 (1978).PubMedGoogle Scholar
  24. 24.
    J. Folch, M. Lees and G. H. Sloane-Stanley, Method for the isolation and purification of total lipids from animal tissues, J. Biol. Chem. 226:497 (1957).PubMedGoogle Scholar
  25. 25.
    M. A. Williams and R. H. McCluer, The use of Sep-Pak C18 cartridges during the isolation of gangliosides, J. Neurochem. 35:266 (1980).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Dreyfus, P. F. Urban, P. Bosch, S. Edel-Harth, G. Rebel and P. Mandel, Effect of light on gangliosides from calf retina and photoreceptors, J. Neurochem. 22:1073 (1974).PubMedCrossRefGoogle Scholar
  27. 27.
    L. Svennerholm, “Ganglioside metabolism,” in: Comprehensive Biochemistry, M. Florkin and E. H. Stotz eds., Elsevier/North-Holland, Amsterdam, (1970).Google Scholar
  28. 28.
    Proceedings of the VIth International Symposium on Glycoconjugates, T. Yamakawa, T. Osawa, S. Handa, Japan Society, Soc. Press, Tokoyo, (1981).Google Scholar
  29. 29.
    J. L. Magnani, B. Nilsson, M. Brockhaus, D. Zopf, Z. Steplewski, H. Koprowski and V. Ginsburg, A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentose II. J. Biol. Chem. 257:14365 (1982).PubMedGoogle Scholar
  30. 30.
    R. Hawkes, E. Niday and J. Gordon, A dot-immunobinding assay for monoclonal and other antibodies, Anal. Biochem. 119:142 (1982).PubMedCrossRefGoogle Scholar
  31. 31.
    V. P. Skipski and M. Barkley, in: Methods in Enzymology, J. M. Lowenstein ed., 14:545 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Marie-Luce Harpin
    • 1
  • Jacques Portoukalian
    • 1
    • 2
  • Bernard Zalc
    • 1
  • Nicole Baumann
    • 1
  1. 1.Laboratoire de NeurochimieINSERM U. 134Paris Cedex 13France
  2. 2.Laboratoire d’Immunologie Centre Leon BerardLyonFrance

Personalised recommendations