An Outline of Ganglioside Metabolism

  • G. Tettamanti
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


Gangliosides are mainly located in the cell plasma membrane and are asymmetrically disposed on the outer membrane leaflet. Their hydrophobic portion (the ceramide) is inserted into the membrane layer and the oligosaccharide moiety protrudes on the membrane surface. Very small amounts of ganglioside are also present in intracellular structures and compartments. These gangliosides are likely the expression of the transient forms moving from the site of biosynthesis to the plasma membrane or migrating from the plasma membrane to the site of degradation. They constitute a small “metabolic” pool as compared to the large “final residence” pool.


Sialic Acid Golgi Apparatus Sialic Acid Residue Multienzyme Complex Brain Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Brunngraber, Biosynthesis of gangliosides; Catabolism of gangliosides, glycosaminoglycans and glycoproteins, in: “Neurochemistry of Aminosugars,” C. C. Thomas, Springfield, Ill., pp. 332–356 and 410-437 (1979).Google Scholar
  2. 2.
    L. Svennerholm, Structure and biology of cell membrane gangliosides, in: “Cholera and Related Diarrheas,” O. Ouchterlony and J. Holmgren, eds., S. Karger, Basel, pp. 80–87 (1980).Google Scholar
  3. 3.
    A. Rosenberg, Biosynthesis and metabolism of gangliosides, in: “Complex Carbohydrates of Nervous Tissue,” R. U. Margolis and R. K. Margolis, eds., Plenum Press, New York, pp. 25–43 (1980).Google Scholar
  4. 4.
    H. Wiegandt, The gangliosides,, in: “Advances in Neurochemistry,” B. W. Agranoff and M. H. Aprison, eds., Plenum Publ. Corp., New York, Vol. 4, pp. 149–223 (1982).Google Scholar
  5. 5.
    R. W. Ledeen, Gangliosides, in: “Handbook of Neurochemistry,” A. Lajtha, ed., Vol. 3 (2nd Ed.), Plenum Publ. Corp., New York, pp. 41–90 (1983).Google Scholar
  6. 6.
    S. Basu and M. Basu, Expression of glycosphingolipid glycosyltransferases in development and transformation, in: “The Glycoconjugates,” M. I. Horowitz and W. Pigman, eds., Academic Press, New York, Vol. III, pp. 265–286 (1982).Google Scholar
  7. 7.
    R. M. Burton, L. Garcia-Bunuel, M. Golden, Incorporation of radioactivity of D-glucosamine-1-14C, D-glucose-1-14C, D-galactose-1-14C and DL-serine-3-14C, into rat brain glycolipids, Biochem. 2:580 (1963).CrossRefGoogle Scholar
  8. 8.
    K. Suzuki, Formation and turnover of the major brain gangliosides during development, J. Neurochem. 14:917 (1967).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Holm and L. Svennerholm, Biosynthesis and biodegradation of rat brain gangliosides studied in vivo, J. Neurochem. 19:609 (1972).PubMedCrossRefGoogle Scholar
  10. 10.
    J. A. Skrivanek, R. W. Ledeen, R. U. Margolis and R. K. Margolis, Gangliosides associated with microsomal subfractions of brain: comparison with synaptic plasma membranes, J. Neurobiol. 13:95 (1982).PubMedCrossRefGoogle Scholar
  11. 11.
    R. W. Ledeen, J. E. Haley, and J. A. Skrivanek, Study of ganglioside patterns with two-dimensional thin layer chromatography and radioautography: detection of new fucogangliosides and other minor species in rabbit brain, Analyt. Biochem. 112:135 (1981).PubMedCrossRefGoogle Scholar
  12. 12.
    A. Arce, H. J. Maccioni, and R. Caputto, The biosynthesis of gangliosides. The incorporation of galactose, N-acetylgalactosamine and N-acetylneuraminic acid into endogenous acceptors of subcellular particles from rat brain in vitro, Biochem. J. 121:483 (1971).PubMedGoogle Scholar
  13. 13.
    P.H. Fishman and R. O. Brady, Biosynthesis and function of gangliosides, Science 194:906 (1976).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Caputto, H. J. Maccioni, A. Arce, and R. F. A. Cumar, Biosynthesis of brain gangliosides, Adv. Exptl. Med. Biol. 71:27 (1976).Google Scholar
  15. 15.
    M. C. M. Yip and J. A. Dain, The enzymic synthesis of ganglioside: I. Brain uridine diphosphate D-galactose: N-acetylgalactosaminyl-galactosyl-glucosylceramide galactosyl transferase, Lipids 4:270 (1969).PubMedCrossRefGoogle Scholar
  16. 16.
    A. Stoffyn, P. Stoffyn and M. C. M. Yip, Chemical structure of monosialoganglioside GM1b biosynthesized in vitro, Biochim. Biophys. Acta 409:97 (1975).PubMedGoogle Scholar
  17. 17.
    R. K. Yu and S. H. Lee, In vitro biosynthesis of sialosylgalactosyl-ceramide (G7) by mouse brain microsomes, J. Biol. Chem. 251:198 (1976).PubMedGoogle Scholar
  18. 18.
    S. Gatt, Enzymatic aspects of sphingolipid degradation, Chem. Phys. Lipids 5:235 (1979).CrossRefGoogle Scholar
  19. 19.
    K. Sandhoff and E. Conzelmann, Activation of lysosomal hydrolysis of complex glycolipids by non-enzymic proteins Trends in Biochem. Sci. 4:231 (1979).CrossRefGoogle Scholar
  20. 20.
    S. C. Li and Y. T. Li, Protein activators for the hydrolysis of GM1 and GM2 gangliosides, in: “Methods in Enzymology,” V. Ginsburg ed., Vol. 83, pp. 588–595 (1982).Google Scholar
  21. 21.
    S. Roseman, The synthesis of complex carbohydrates by multiglycosyl-transferase systems and their potential function in intracellular adhesion, Chem. Phys. Lipids 5:270 (1970).PubMedCrossRefGoogle Scholar
  22. 22.
    C.A. Landa, H. J. Maccioni, A. Arce, and R. Caputto, The biosynthesis of gangliosides. Separation of membranes with different ratios of gangliosides-sialylating activity to gangliosides, Biochem. J. 168:325 (1977).PubMedGoogle Scholar
  23. 23.
    H. J. Maccioni, S. S. De Filpo, C.A. Landa, and R. Caputto, The biosynthesis of gangliosides, ganglioside glycosylating activity in rat brain neuronal perikarya fraction, Biochem. J. 174:673 (1978).PubMedGoogle Scholar
  24. 24.
    T. W. Keenan, Membranes of mammary gland. IX. Concentration of glycosphingolipid galactosyl and sialyltransferases in Golgi apparatus from bovine mammary gland, J. Dairy Sci. 57:189 (1974).CrossRefGoogle Scholar
  25. 25.
    T. W. Keenan, D. J. Morre, and S. Basu, Concentration of glycosphingolipid glycosyltransferase in Golgi apparatus from rat liver, J. Biol. Chem. 249:310 (1974).PubMedGoogle Scholar
  26. 26.
    C. A. Landa, H. J. Maccioni, and R. Caputto, The site of synthesis of gangliosides in the chick optic system, J. Neurochem. 33:825 (1979).PubMedCrossRefGoogle Scholar
  27. 27.
    H. Miller Podraza and P. H. Fishman, Soluble gangliosides in cultured neurotumor cells, J. Neurochem. 41:860 (1983).CrossRefGoogle Scholar
  28. 28.
    R. Kannagi, E. Nudelman, and S. I. Hakomori, Possible role of ceramide in defining structure and function of membrane glycolipids, Proc. Natl. Acad. Sci. USA 79:3470 (1982).PubMedCrossRefGoogle Scholar
  29. 29.
    C.-L. Schengrund and A. Rosenberg, Intracellular location and properties of bovine brain sialidase, J. Biol. Chem. 245:6196 (1970).PubMedGoogle Scholar
  30. 30.
    G. Tettamanti, I. G. Morgan, A. Gombos, G. Vincendon, and P. Mandel, Sub-synaptosomal localization of brain particulate neuraminidase, Brain Res. 47:515 (1972).PubMedCrossRefGoogle Scholar
  31. 31.
    L. Caimi, T. Burkart, U. N. Wiesmann, and G. Tettamanti, Subcellular localization of sialidase in myelinating mouse brain, Proceedings of the International Symposium “Sialidase and sialidoses,” Genoa, September (1980).Google Scholar
  32. 32.
    R. W. Veh and M. Sander, Differentation between ganglioside and sialyllactose sialidases in human tissues, in: “Sialidases and Sialidoses,” G. Tettamanti, P. Durand, and S. Di Donato, eds., Edi Ermes, Milan, Italy, pp. 71–109 (1981).Google Scholar
  33. 33.
    K. Sandhoff, The biochemistry of sphingolipid storage diseases, Angew. Chem. Int. Ed. Engl. 16:273 (1977).PubMedCrossRefGoogle Scholar
  34. 34.
    G. W. Klinghardt, P. Fredman, and L. Svennerholm, Chloroquine intoxication induces ganglioside storage in nervous tissue: a chemical and histopathological study of brain, spinal cord, dorsal root ganglia and retina in the miniature pig, J. Neurochem. 37:897 (1981).PubMedCrossRefGoogle Scholar
  35. 35.
    H. Miller Podraza and P. H. Fishman, Translocation of newly synthesized gangliosides to the cell surface, Biochem. 21:3265 (1982).CrossRefGoogle Scholar
  36. 36.
    C.A. Landa, S. S. Defildo, H. J. Maccioni, and R. Caputto, Disposition of gangliosides and sialosyl glycoproteins in neuronal membranes, J. Neurochem. 37:813 (1981).PubMedCrossRefGoogle Scholar
  37. 37.
    T. Burkart, L. Caimi, H. P. Siegrist, N. N. Herschkowitz, and U. N. Wiesmann, Vesicular transport of sulfatide in the myelinating mouse brain, functional association with lysosomes?, J. Biol. Chem. 257:3151 (1982).PubMedGoogle Scholar
  38. 38.
    R. W. Ledeen, J. A. Skrivanek, J. Nunez, J. R. Sclafani, W. T. Norton and M. Farooq, Implication of the distribution and transport of gangliosides in the nervous system, in: “Gangliosides in Neurological and Neuromuscular Function, Development and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York, pp. 211–223 (1981).Google Scholar
  39. 39.
    H. Rosner and G. Merz, Uniform distribution and similar turnover rates of individual gangliosides along axons of retinal ganglion-cells in the chicken, Brain Res. 236:63 (1982).PubMedCrossRefGoogle Scholar
  40. 40.
    R. W. Ledeen, J. A. Skrivanek, L. J. Tirri, R. K. Margolis, and R. U. Margolis, Gangliosides of the neuron: localization and origin, Adv. Exptl. Med. Biol. 71:83 (1976).Google Scholar
  41. 41.
    L. M. Patt and W. J. Grimes, Cell surface glycolipid and glycoprotein glycosyltransferases of normal and transformed cells, J. Biol. Chem. 249:4157 (1974).PubMedGoogle Scholar
  42. 42.
    H. B. Bosman, Cell surface glycosyltransferases and acceptors in normal and RNA-and DNA virus transformed fibroblasts, Biochem. Biophys. Res. Commun. 43:1118 (1972).CrossRefGoogle Scholar
  43. 43.
    A. Preti, A. Fiorilli, A. Lombardo, L. Caimi, and G. Tettamanti, Occurrence of sialyltransferase activity in the synaptosomal membranes prepared from calf brain cortex, J. Neurochem. 35:281 (1980).PubMedCrossRefGoogle Scholar
  44. 44.
    W. Ferwerda, C. M. Blok, and J. Heijlman, Turnover of free sialic acid, CMP-sialic acid, and bound sialic acid in rat brain, J. Neurochem. 36:1492 (1981).PubMedCrossRefGoogle Scholar
  45. 45.
    D. Van Den Eijnden, The subcellular location of cytidine 5′-monophospho-N-acetylneuraminic acid synthetase in calf brain, J. Neurochem. 21:949 (1973).PubMedCrossRefGoogle Scholar
  46. 46.
    W. Ferwerda, C. M. Blok, and J. Van Rinsum, CMP-N-acetylneuraminic acid; is it synthesized in the nucleus?, in: “Glycoconjugates: Proceedings of the 7th Int. Symposium on Glycoconjugates,” M. A. Chester, D. Heinegard, A. Lundblad, and S. Svensson, eds., pp. 733–734 (1983).Google Scholar
  47. 47.
    S.I. Hakomori, Structures and organization of cell surface glycolipids. Dependency on cell growth and malignant transformation, Biochim. Biophys. Acta 417:55 (1975).PubMedGoogle Scholar
  48. 48.
    J. Kanfer and R. L. Richards, Effect of puromycin on the incorporation of radioactive sugars into gangliosides in vivo, J. Neurochem. 14:513 (1967).PubMedCrossRefGoogle Scholar
  49. 49.
    S.N. Shah and N. A. Peterson, Effects of cycloheximide and puromycin on glycosyltransferases of microsomal fractions from rat brain, Biochim. Biophys. Acta 239:126 (1971).PubMedGoogle Scholar
  50. 50.
    P. H. Fishman and R. C. Henneberry, Induction of ganglioside biosynthesis in cultured cells by butyric acid, in: “Cell Surface Glycolipids,” C. C. Sweeley, ed., ACS Symposium Series 128, American Chemical Society, Washington, D.C., pp. 223–239 (1980).CrossRefGoogle Scholar
  51. 51.
    H. K. M. Yusuf, G. Pohlentz, G. Schwarzmann and K. Sandhoff, Ganglioside biosynthesis in rat liver Golgi apparatus: stimulation by phosphatidylglycerol and inhibition by tunicamycin, in: “Glycoconjugates: Proceedings of the 7th Int. Symposium on Glycoconjugates,” M. A. Chester, D. Heinegard, A. Lundblad, and S. Svensson, eds., pp. 773–774 (1983).Google Scholar
  52. 52.
    G. Dawson, R. W. McLawhon, G. Schoon, and R. J. Miller, Modulation of ganglioside synthesis by enkephalins, opiates and prostaglandins. Role of cyclic AMP in glycosylation, in: “Cell Surface Glycolipids,” C. C. Sweeley, ed., ACS Symposium Series 128, American Chemical Society, Washington, D.C., pp. 359–372 (1980).CrossRefGoogle Scholar
  53. 53.
    R. W. McLawhon, G. S. Schoon, and G. Dawson, Possible role of cyclic AMP in the receptor-mediated regulation of glycosyltransferase activities in neurotumor cell lines, J. Neurochem. 37:132 (1981).PubMedCrossRefGoogle Scholar
  54. 54.
    K. Sandhoff, G. Scheel, and H. Nehrkorn, Membrane bound sialidase. Regulation of ganglioside GDla degradation by the physical state of the membrane, in: “Sialidases and Sialidoses,” G. Tettamanti, P. Durand, and S. Di Donato, eds., Edi Ermes, Milan, Italy, pp. 125–143 (1981).Google Scholar
  55. 55.
    L. Svennerholm, Ganglioside designation, Adv. Exptl. Med. Biol. 125:11 (1980).Google Scholar
  56. 56.
    IUPAC-IUB Commission on Biochemical nomenclature. The nomenclature of lipids, Lipids 12:455 (1977), Abbreviated terminology of oligosaccharide chains, J. Biol. Chem. 257:3347 (1982).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • G. Tettamanti
    • 1
  1. 1.Department of Biological ChemistryThe Medical School University of MilanMilanItaly

Personalised recommendations