Gangliosides and Related Compounds as Biological Response Modifiers

  • Yoshitaka Nagai
  • Shuichi Tsuji
  • Yutaka Sanai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


In the previous chapter1 we already discussed the curious fact that a considerably large number of glycosphingolipids (GSL) occur sporadically in nature and that this sporadic character seemingly makes it difficult to presuppose a special physiological function of these GSL except for practical utility in differentiating individual cells from each other. The significance of individual GSL species as cell surface markers or surface differentiation markers has already been recognized, as in the case of blood group GSL, Forssman antigen, globosides and asialo-GM1 in the subpopulation analysis of the haematopoietic system and in the analysis of developmental and differentiation processes of the haematopoietic system. Thus these markers, though they have no definite intrinsic physiological function, provide a useful tool to analyse these important biological processes at a cellular level. Moreover, we can specifically manipulate or control cell activities in vivo of tumor cells2 and subpopulations of lymphoid cells3, 4 by virtue of such cell marker recognition, for example, using specific antibodies or ligands to these surface markers. We will discuss this problem by taking asialo-GM1 (GA1 or Gg4Cer) ganglioside as representative.


Nerve Growth Factor Neurite Outgrowth Natural Killer Cell Activity Biological Response Modifier Mouse Hepatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Nagai and M. Iwamori, Ganglioside distribution at different levels of organization and its biological implications; this volume.Google Scholar
  2. 2.
    D. L. Urdel and S. Hakomori, Tumor-associated ganglio-N-trio-sylceramide: target for antibody-dependent, avidin-mediated drug killing of tumor cells, J. Biol. Chem. 255:10509 (1980).Google Scholar
  3. 3.
    K. Sakakibara, T. Uchida, and Y. Nagai, Immunosuppressive effect of anti-asialo GM1 antiserum on hamsters heterotransplanted with Yoshida ascitic hepatoma cells, Proc. Japan. Cancer Assoc. The 29th Ann. Meeting, Tokyo, p. 101 (1980).Google Scholar
  4. 4.
    S. Habu, H. Fukui, K. Shimamura, M. Kasai, Y. Nagai, K. Okumura, and S. Tamaoki, In vivo effect of anti-asialo-GM1. I. Reduction of NK activity and enhancement of transplantation tumor growth in nude mice, J. Immunol. 127:34 (1981).PubMedGoogle Scholar
  5. 5.
    M. Kasai, M. Iwamori, Y. Nagai, K. Okumura, and T. Tada, A glycolipid on the surface of mouse natural killer cells, Eur. J. Immunol. 10:175 (1980).PubMedCrossRefGoogle Scholar
  6. 6.
    W. W. Young, Jr., S. Hakomori, J. M. Durdik, and C. S. Henney, Identification of ganglio-N-tetraosylceramide as a new surface marker for murine natural killer (NK) cells, J. Immunol. 124:199 (1980).PubMedGoogle Scholar
  7. 7.
    G. A. Schwarting, A. Summers, R. D. Stout, D. R. Parkinson, and S. D. Waksal, Association of asialo GM1 with natural killer activity in mice, Fed. Proc. 39:931 (1980).Google Scholar
  8. 8.
    G. A. Schwarting and A. Summers, Gangliotetraosylceramide is a T cell differentiation antigen associated with natural cell-mediated cytotoxicity, J. Immunol. 124:1691 (1980).PubMedGoogle Scholar
  9. 9.
    S. Habu, M. Kasai, Y. Nagai, N. Tamaoki, T. Tada, L. A. Herzenberg, and K. Ikumura, The glycolipid asialo GM1 as a new differentiation antigen of fetal thymocytes, J. Immunol. 125:2284 (1980).PubMedGoogle Scholar
  10. 10.
    T. Nakano, Y. Imai, M. Naiki, and T. Osawa, Characterization of mouse helper and suppressor T cell subsets separated by lectins, J. Immunol. 125:1928 (1980).PubMedGoogle Scholar
  11. 11.
    B. Kniep, T. R. Hunig, F. W. Fitch, J. Heuer, E. Kolsch, and P. F. Muhlradt, Neutral glycosphingolipids of murine myeloma cells and helper, cytolytic, and suppressor T lymphocytes, Biochemistry 22:251 (1981).CrossRefGoogle Scholar
  12. 12.
    T. Momoi, H. Wiegandt, R. Arndt, and H. Thiele, Gangliotetraosylceramide, the rat T lymphocyte-macrophage-associated antigen: chemical detection and cellular distribution, J. Immunol. 125:2496 (1980).PubMedGoogle Scholar
  13. 13.
    T. Taki, K. Takagi, R. Kamada, M. Matsumoto, and K. Kojima, Study of asialo gangliosides on surface membranes of rat bone marrow cells and macrophages, J. Biochem. 90:1653 (1981).PubMedGoogle Scholar
  14. 14.
    T. Momoi, K. Nakajima, K. Sakakibara, and Y. Nagai, Localization of a glycosphingolipid, asialo GM1, in rat immunocytes, J. Biochem. 91:301 (1982).PubMedGoogle Scholar
  15. 15.
    I. Kawase, D. L. Urdal, C. G. Brooks, and C. S. Henney, Selective depletion of NK cell activity in vivo and its effect on the growth of NK-sensitive and NK-resistant tumor cell variants, Int. J. Cancer 29:567 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    F. Taguchi, Y. Sanai, K. Fujiwara, and Y. Nagai, Role of natural killer cells in the infection of mice with mouse hepatitis virus, JHM, as demonstrated by the use of anti-asialo GM1 serum, submitted to Infect. Immun.Google Scholar
  17. 17.
    T. Hirano, H. Hashimoto, Y. Shiokawa, M. Iwamori, Y. Nagai, M. Kasai, Y. Ochiai, and K. Okumura, Antiglycolipid autoantibody detected in the sera from systemic lupus erythematosus patients, J. Clin. Invest. 66:1437 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    T. Endo, D. D. Scott, S. Stewart, S. K. Kundu, and D. M. Marcus, Antibodies to glycosphingolipids in patients with multiple sclerosis and SLE, in: “Glycoconjugates”, Proc. 7th Internatl. Symp. on Glycoconjugates, Lund-Ronneby, Sweden, p. 244 (1983).Google Scholar
  19. 19.
    G. Inaba and J. Aoyama, Anti-glycolipid antibodies in neuro-behcet’s syndrome, in: “Behcet’s Disease”, Pathogenetic Mechanism and Clinical Features, Proc. Internatl. Conf. on Behcet’s Disease, G. Inaba, ed., p. 145, Univ. Tokyo Press, Tokyo (1982).Google Scholar
  20. 20.
    M. A. Bach, F. Phan-Dinh-Tuy, E. Tourier, L. Chatenoud, J.-F. Bach, C. Martin, and J. D. Degos, Deficit of suppressor T cells in active multiple sclerosis, Lancet 1221 (1980).Google Scholar
  21. 21.
    E. L. Reinherz, H. L. Weiner, S. L. Hauser, J. A. Cohen, J. A. Distaso, and S. F. Schlossman, Loss of suppressor T cells in active multiple sclerosis. Analysis with monoclonal antibodies, New Engl. J. Med. 303:125 (1980).PubMedCrossRefGoogle Scholar
  22. 22.
    E. S. Golub, Connections between the nervous, haematopoietic and germ-cell systems, Nature 299:483 (1982).PubMedCrossRefGoogle Scholar
  23. 23.
    M. M. Rapport and A. Gorio (eds.), “Gangliosides in Neurological and Neuromuscular Function, Development, and Repair”, Raven Press, New York (1981).Google Scholar
  24. 24.
    K. M. Yamada, D. R. Critchley, P. H. Fishman, and J. Moss, Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells, Exp. Cell Res. 143:295 (1983).PubMedCrossRefGoogle Scholar
  25. 25.
    C. Icard-Liepkalns, V. A. Liepkalns, A. J. Yates, and R. E. Stephens, Cell cycle phases of a novel human cell line and the effect of exogenous gangliosides, Biochem. Biophys. Res. Commun. 105:225 (1982).PubMedCrossRefGoogle Scholar
  26. 26.
    L. Srinivas, T. D. Gindhart, and N. H. Colburn, Tumor-promoter-resistant cells lack trisialoganglioside response, Proc. Natl. Acad. Sci. USA 79:4988 (1982).PubMedCrossRefGoogle Scholar
  27. 27.
    P. Laccetti, E. F. Grollman, S. M. Aloj, and L. D. Kohn, Ganglioside dependent return of TSH receptor function in a rat thyroid tumor with a TSH receptor defect, Biochem. Biophys. Res. Commun. 110:772 (1983).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Tsuji, M. Arita, and Y. Nagai, GQlb, a bioactive ganglioside that exhibits novel nerve growth factor (NGF)-like activities in the two cell lines of neuroblastoma, J. Biochem. 94:303 (1983).PubMedGoogle Scholar
  29. 29.
    M. Sekiguchi, T. Oota, K. Sakakibara, N. Inui, and G. Fujii, Establishment and characterization of a human neuroblastoma cell line in tissue culture, Japan. J. Exp. Med. 49:67 (1979).Google Scholar
  30. 30.
    S. Miyake, Y. Shimo, T. Kitanuma, Y. Nojyo, T. Nakamura, S. Imashuku, and T. Abe, Characteristic of continuous and functional cell line NB-1, derived from a human neuroblastoma, Autonomic Nerv. System 10:115 (1973).Google Scholar
  31. 31.
    Y. Nagai and M. Iwamori, Brain and thymus gangliosides: Their molecular diversity and its biological implications and a dynamic annular model for their function in cell surface membranes, Mol. Cell. Biochem. 29:81 (1980).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Yoshitaka Nagai
    • 1
  • Shuichi Tsuji
    • 1
  • Yutaka Sanai
    • 1
  1. 1.Department of Biochemistry Faculty of MedicineUniversity of TokyoBunkyo-ku, Tokyo 113Japan

Personalised recommendations