Cellular Localization of Gangliosides in the Mouse Cerebellum: Analysis Using Neurological Mutants

  • Thomas N. Seyfried
  • Robert K. Yu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


Understanding the function of gangliosides in the central nervous system (CNS) requires knowledge of their cellular distribution. It would be important to know if certain gangliosides are more or less concentrated in specific neural cell types and to know how gangliosides are distributed over the surface of neurons. In other words, are all gangliosides randomly distributed over the entire cell surface or are there domains on the neuronal surface (synapse, dendrite, perikaryon, axon hillock, axon) where the concentration of one ganglioside predominates over that of another. The distribution of gangliosides between cells and within cells may also vary with age. Hence, a series of neurological mouse mutants that lose specific populations of cerebellar neurons at various stages of development provides an excellent system for studying the cellular distribution of gangliosides in the CNS.


Purkinje Cell Granule Cell Reactive Gliosis Mouse Cerebellum Brain Ganglioside 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Rakic and R. Sidman, Weaver mutant mouse cerebellum: Defective neuronal migration secondary to abnormality of Bergmann glia, Proc. Natl. Acad. Sci. (USA) 70:240 (1973).CrossRefGoogle Scholar
  2. 2.
    C. Sotelo, Anatomical, physiological, and biochemical studies of the cerebellum from mutant mice. II. Morphological study of cerebellar cortical neurons and circuits in the weaver mouse, Brain Res. 94:19 (1975).PubMedCrossRefGoogle Scholar
  3. 3.
    R. J. Mullen, E. M. Eicher, and R. L. Sidman, Purkinje cell degeneration, a new neurological mutation in the mouse, Proc. Natl. Acad. Sci. (USA) 73:208 (1976).CrossRefGoogle Scholar
  4. 4.
    S. C. Landis and R. J. Mullen, The development and degeneration of Purkinje cells in the pcd mutant mouse, J. Comp. Neurol. 177:125 (1978).PubMedCrossRefGoogle Scholar
  5. 5.
    R. L. Sidman, P. W. Lane, and M. M. Dickie, Staggerer, a new mutation in the mouse affecting the cerebellum, Science 137:610 (1962).PubMedCrossRefGoogle Scholar
  6. 6.
    D. B. Wilson, Histological defects in the cerebellum of adult lurcher (Lc) mice, J. Neuropathol. Exp. Neurol. 35:40 (1976).PubMedCrossRefGoogle Scholar
  7. 7.
    K. W. T. Caddy, The numbers of Purkinje, granule cells and olive neurons in the lurcher mutant mouse, J. Physiol. 277:8 (1978).Google Scholar
  8. 8.
    S. C. Landis and R. L. Sidman, Electron microscopic analysis of postnatal histogenesis in the cerebellar cortex of staggerer mutant mice, J. Comp. Neurol. 179:831 (1978).PubMedCrossRefGoogle Scholar
  9. 9.
    K. Herrup and R. J. Mullen, Regional variation and absence of large neurons in the cerebellum of the staggerer mouse, Brain Res. 172:1 (1979).PubMedCrossRefGoogle Scholar
  10. 10.
    D. S. Sax, A. Hirano, and R. J. Shofer, Staggerer, neurological murine mutant, Neurology (Minneap.) 18:1093 (1968).CrossRefGoogle Scholar
  11. 11.
    A. Hirano and H. M. Dembitzer, The fine structure of astrocytes in the adult staggerer, J. Neuropath. Exp. Neurol. 35:63 (1976).PubMedCrossRefGoogle Scholar
  12. 12.
    B. Ghetti, L. Truex, B. Sawyer, S. Strada, and M. Schmidt, Exaggerated cyclic AMP accumulation and glial cell reaction in the cerebellum during Purkinje cell degeneration in pcd mutant mice, J. Neurosci. Res. 6:789 (1981).PubMedCrossRefGoogle Scholar
  13. 13.
    T. N. Seyfried, R. K. Yu, and N. Miyazawa, Differential cellular enrichment of gangliosides in the mouse cerebellum: Analysis using neurological mutants, J. Neurochem. 38:551 (1982).PubMedCrossRefGoogle Scholar
  14. 14.
    R. K. Yu and K. Iqbal, Sialosylgalactosyl ceramide as a specific marker for human myelin and oligodendroglial perikarya: Gangliosides of human myelin, oligodendroglia and neurons, J. Neurochem. 32:293 (1979).PubMedCrossRefGoogle Scholar
  15. 15.
    K. Suzuki, S. E. Poduslo, and W. T. Norton, Gangliosides in the myelin fraction of developing rats, Biochim. Biophys. Acta 144:375 (1967).PubMedGoogle Scholar
  16. 16.
    K. Suzuki, S. E. Poduslo, and J. F. Poduslo, Further evidence for a specific ganglioside closely associated with myelin, Biochim. Biophys. Acta 152:576 (1968).PubMedGoogle Scholar
  17. 17.
    K. Ueno, S. Ando, and R. K. Yu, Gangliosides of human, cat and rabbit spinal cords and cord myelin, Lipid Res. 19:863 (1978).Google Scholar
  18. 18.
    R. K. Yu, R. W. Ledeen, and L. F. Eng, Ganglioside abnormalities in multiple sclerosis, J. Neurochem. 23:169 (1974).PubMedCrossRefGoogle Scholar
  19. 19.
    R. K. Yu, K. Ueno, G. H. Glaser, and W. W. Tourtellotte, Lipid and protein alterations of spinal cord and cord myelin of multiple sclerosis, J. Neurochem. 39:464 (1982).PubMedCrossRefGoogle Scholar
  20. 20.
    R. Ledeen, K. Salsman, and M. Cabrera, Gangliosides in subacute sclerosing leukoencephalitis: Isolation and fatty acid composition of nine fractions, J. Lipid Res. 9:129 (1968).PubMedGoogle Scholar
  21. 21.
    W. T. Norton, S. E. Poduslo, and K. Suzuki, Subacute sclerosing leukoencephalitis. II. Chemical studies including abnormal myelin and abnormal ganglioside pattern, J. Neuropath Exp. Neurol. 25:582 (1966).PubMedCrossRefGoogle Scholar
  22. 22.
    R. K. Yu, R. W. Ledeen, D. C. Gajdusek, and C. J. Gibbs, Ganglioside changes in slow virus disease: Analysis of chimpanzee brains infected with kuru and Creutzfeldt-Jakob agents, Brain Res. 70:103 (1974).PubMedCrossRefGoogle Scholar
  23. 23.
    R. K. Yu, and E. E. Manuelidis, Ganglioside alterations in guinea pig brains at end stages of experimental Creutzfeldt-Jakob disease, J. Neurol. Sci. 35:15 (1978).PubMedCrossRefGoogle Scholar
  24. 24.
    Y. Tamai, H. Kojima, F. Ikuta, and T. Kumaishi, Alterations in the composition of brain lipids in patients with Creutzfeldt-Jakob disease, J. Neurol. Sci. 35:59 (1968).CrossRefGoogle Scholar
  25. 25.
    K. Suzuki and G. Chen, Chemical studies on Creutzfeldt-Jakob disease, J. Neuropath Exp. Neurol. 25:396 (1966).PubMedCrossRefGoogle Scholar
  26. 26.
    H. Bernheimer, G. Sperk, K. S. Price, and O. Hornykiewicz, Brain gangliosides in Huntingtons disease, Adv. Neurol. 23:463 (1979).Google Scholar
  27. 27.
    K. Suzuki, in: “Inborn Disorders of Sphingolipid Metabolism,” S. M. Aronson and B. W. Volk, eds., Pergamon, New York (1967).Google Scholar
  28. 28.
    B. Hagber, G. Hultquist, R. Ohman, and L. Svennerholm, Congenital amaurotic idiocy, Acta. Paediat. Scandinavica 54:116 (1965).CrossRefGoogle Scholar
  29. 29.
    L. Svennerholm, and M. T. Vanier, Brain gangliosides in Krabbe disease, Adv. Exp. Med. Biol. 19:499 (1972).Google Scholar
  30. 30.
    Y. Suzuki, S. H. Tucker, L. B. Rorke, and K. Suzuki, Ultrastructural and biochemical studies of Schilder’s disease, J. Neuropath. Exp. Neurol. 29:405 (1970).PubMedCrossRefGoogle Scholar
  31. 31.
    M. Igarashi, D. Belchis and K. Suzuki, Brain gangliosides in adrenoleukodystrophy, J. Neurochem. 27:327 (1976).CrossRefGoogle Scholar
  32. 32.
    T. N. Seyfried, N. Miyazawa, and R. K. Yu, Cellular localization of gangliosides in the developing mouse cerebellum: Analysis using the weaver mutant, J. Neurochem. 41:491 (1983).PubMedCrossRefGoogle Scholar
  33. 33.
    P. Rakic, and R. Sidman, Sequence of developmental abnormalities leading to granule cell deficit in cerebellar cortex of weaver mutant mice, J. Comp. Neurol. 152:103 (1973).PubMedCrossRefGoogle Scholar
  34. 34.
    P. Rakic, and R. Sidman, Organization of the cerebellar cortex secondary to deficit of granule cells in weaver mutant mice, J. Comp. Neurol. 152:133 (1973).PubMedCrossRefGoogle Scholar
  35. 35.
    C. Sotelo, Dendritic abnormalities of Purkinje cells in the cerebellum of neurologic mutant mice (weaver and staggerer), Adv. Neurol. 12:335 (1975).PubMedGoogle Scholar
  36. 36.
    P. Bradley, and M. Berry, The Purkinje cell dendritic tree in mutant mouse cerebellum. A quantitative golgi study of weaver and staggerer mice, Brain Res. 142:135 (1978).PubMedCrossRefGoogle Scholar
  37. 37.
    Z. Rezai, and C. H. Yoon, Abnormal rate of granule cell migration in the cerebellum of the weaver mouse, Develop. Biol. 29:17 (1972).PubMedCrossRefGoogle Scholar
  38. 38.
    L. M. H. Larramendi, Analysis of synaptogenesis in the cerebellum of the mouse, in: “Neurobiology of Cerebellar Evolution and Development,” R. Llinas, ed., American Medical Association Education and Research Federation, Chicago (1969).Google Scholar
  39. 39.
    S. L. Palay, and V. C. Palay, “Cerebellar Cortex,” Springer-Verlag, New York (1974).CrossRefGoogle Scholar
  40. 40.
    G. M. Shepherd, “Synaptic Organization of the Brain,” Oxford University Press, London (1974).Google Scholar
  41. 41.
    H. K. M. Yusuf, and J. W. T. Dickerson, Disialoganglioside GDla of rat brain subcellular particles during development, Biochem. J. 174:655 (1978).PubMedGoogle Scholar
  42. 42.
    L. N. Irwin, and C. C. Irwin, Developmental changes in ganglioside composition of hippocampus, retina, and optic tectum, Dev. Neurosci. 2:129 (1979).CrossRefGoogle Scholar
  43. 43.
    E. R. Engel, J. G. Wood, and F. E. Byrd, Ganglioside patterns and cholera toxin peroxidase labeling of aggregating cells from the chick optic tectum, J. Neurobiol. 10:429 (1979).PubMedCrossRefGoogle Scholar
  44. 44.
    H. Rosner, Ganglioside changes in the chicken optic lobe as biochemical indicators of brain development and maturation, Brain Res. 236:49 (1982).PubMedCrossRefGoogle Scholar
  45. 45.
    R. Hilbig, H. Rosner, G. Merz, K. Segler-Stahl, and H. Rahmann, Developmental profiles of gangliosides in mouse and rat cerebral cortex, Wilhelm Rouxs Arch. 191:281 (1982).CrossRefGoogle Scholar
  46. 46.
    K. C. Leskawa and A. Rosenberg, The organization of gangliosides and other lipid components in synaptosomal plasma membranes and modifying effects of calcium ion, Cell Molec. Biol. 1:373 (1981).Google Scholar
  47. 47.
    K. Suzuki, The pattern of mammalian brain gangliosides. III. Regional and developmental differences, J. Neurochem. 12:969 (1965).CrossRefGoogle Scholar
  48. 48.
    A. Merat, S. Sajjadi, and J. W. T. Dickerson, Effect of development on the gangliosides of rabbit brain, Biol. Neonate 36:25 (1979).PubMedCrossRefGoogle Scholar
  49. 49.
    L. Svennerholm, and P. Fredman, A procedure for the quantitative isolation of brain gangliosides, Biochim. Biophys. Acta 617:97 (1980).PubMedGoogle Scholar
  50. 50.
    T. N. Seyfried, T. Itoh, G. H. Glaser, N. Miyazawa, and R. K. Yu, Cerebellar gangliosides and phospholipids in mutant mice with ataxia and epilepsy: The tottering/leaner syndrome, Brain Res. 219:429 (1981).CrossRefGoogle Scholar
  51. 51.
    G. M. Weiss, and J. J. Pysh, Evidence for loss of Purkinje cell dendrites during late development: A morphometric golgi analysis in the mouse, Brain Res. 154:219 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    T. N. Seyfried and R. K. Yu, Cellular localization and function of ganglioside GD3 in the CNS, Trans. Am. Soc. Neurochem. 13:94 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Thomas N. Seyfried
    • 1
  • Robert K. Yu
    • 1
  1. 1.Department of NeurologyYale University School of MedicineNew HavenUSA

Personalised recommendations