Glycosphingolipids of Equine Erythrocytes Membranes: Complete Characterization of a Fucoganglioside

  • Shinsei Gasa
  • Akira Makita
  • Ken Yanagisawa
  • Mitsuru Nakamura
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 174)


The major glycosphingolipids of mammalian erythrocytes have been demonstrated to be characteristic of the species from which they are derived.1 In equine erythrocytes the predominant glycolipids are hematoside (II3 NeuGc-LacCer)2 and its derivative which contains O-acetyl ester at the N-glycolylneuraminyl moiety.3–5 In connection with the previous study,5 it was found that equine erythrocytes have additional minor ganglioside components. A fucoganglioside purified from the minor ganglioside components was studied for its chemical structure by means of nuclear magnetic resonance (MNR) spectrometry, and destructive methods.


Amide Proton Anomeric Proton Neuraminic Acid Chain Base Long Chain Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Yamakawa and Y. Nagai, Trends Biochem. Sci. 3:128 (1978).CrossRefGoogle Scholar
  2. 2.
    T. Yamakawa and S. Suzuki, J. Biochem. 38:199 (1951).Google Scholar
  3. 3.
    S. Hakomori and T. Saito, Biochemistry 8:5082 (1969).PubMedCrossRefGoogle Scholar
  4. 4.
    R. Schauer, R. Veh, M. Sander, A. P. Corfield, and H. Wiegandt, in: “Structure and Function of Gangliosides”, L. Svennerholm, P. Mandel, H. Drefus, and P.-F. Urban, eds., p. 283, Plenum Press, New York (1980).Google Scholar
  5. 5.
    S. Gasa, A. Makita, and Y. Kinoshita, J. Biol. Chem. 258:876 (1983).PubMedGoogle Scholar
  6. 6.
    R. W. Ledeen, R. K. Yu, and L. F. Eng, J. Neurochem. 21:829 (1973).PubMedCrossRefGoogle Scholar
  7. 7.
    T. Momoi, S. Ando, and Y. Nagai, Biochim. Biophys. Acta 441:488 (1976).PubMedGoogle Scholar
  8. 8.
    S. Gasa, T. Mitsuyama, and A. Makita, J. Lipid Res. 24:174 (1983).PubMedGoogle Scholar
  9. 9.
    T. A. W. Koerner, J. H. Prestegard, P. C. Demou, and R. K. Yu, Biochemistry 22:2676 (1983).PubMedCrossRefGoogle Scholar
  10. 10.
    Y. Yoda, A. Makita, and S. Gasa, J. Biochem. 91:627 (1982).PubMedGoogle Scholar
  11. 11.
    M. Ohashi and T. Yamakawa, J. Biochem. 81:1675 (1977).PubMedGoogle Scholar
  12. 12.
    H. Wiegandt, Hoppe-Seyler’s Z. Physiol. Chem. 354:1049 (1973).PubMedCrossRefGoogle Scholar
  13. 13.
    A. Suzuki, I. Ishizuka, and T. Yamakawa, J. Biochem. 78:947 (1975).PubMedGoogle Scholar
  14. 14.
    R. Ghidoni, S. Sonnino, G. Tettamanti, H. Wiegandt, and V. Zambotti, J. Neurochem. 27:511 (1976).PubMedCrossRefGoogle Scholar
  15. 15.
    B. Macher, T. Pacuszka, B. R. Mullin, C. C. Sweeley, R. O. Brady, and P. H. Fishman, Biochim. Biophys. Acta 588:35 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Shinsei Gasa
    • 1
  • Akira Makita
    • 1
  • Ken Yanagisawa
    • 1
  • Mitsuru Nakamura
    • 1
  1. 1.Biochemistry Laboratory, Cancer InstituteHokkaido University School of MedicineSapporo 060Japan

Personalised recommendations