Advertisement

Facilitated Diffusion and Electrical Potentials in Protein Solutions with Ionic Species

  • L. Hoofd
  • P. Breepoel
  • F. Kreuzer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)

Abstract

The diffusion of oxygen or carbon monoxide is facilitated, i.e., the diffusion is greater than that expected from its concentration tradient in solutions of hemoglobin or myoglobin. Since the early discovery of this phenomenon (Wittenberg, 1959; Scholander, 1960) much theoretical work has been done that recognizes the facilitation as a cocurrent diffusion of the species bound to the respective protein (Kreuzer and Hoofd, 1982).

Keywords

Electrical Potential Oxygen Partial Pressure Potential Field Protein Solution Oxygen Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beek, G.G.M. van, Zuiderweg, E.R.P., and de Bruin, S.H., 1979, The binding of chloride ions to ligated and unligated human hemoglobin and its influence on the Bohr effect, Eur. J. Biochem., 99: 379.PubMedCrossRefGoogle Scholar
  2. Breepoel, P.M., de Koning, J., and Hoofd, L.J.C., 1981, Facilitation of oxygen diffusion in hemoglobin solutions: measurement of electrical effects, in: “Oxygen Transport to Tissue”, Adv. Physiol. Sci. Vol. 25, A.G.B. Kovách, E. Dora, M. Kessler, I.A. Silver, eds., Pergamon Press, Akadémiai Kiadó, Budapest, p. 315.Google Scholar
  3. Breepoel, P.M., de Koning, J., and Hoofd, L.J.C., in prep., Diffusion of oxygen in methemoglobin solutions. Dependence on salt concentration.Google Scholar
  4. Bright, P.B., 1967, The basic flow equations of electrophysiology in the presence of chemical reactions; II. A practical application concerning the pH voltage effects accompanying the diffusion of O2 through hemoglobin solution, Bull. Math. Biophys., 29: 123.CrossRefGoogle Scholar
  5. Fox, M.A., and Landahl, H.D., 1965, Theory of hemoglobin facilitated oxygen transport. Bull. Math. Biophys., 27: 183.PubMedCrossRefGoogle Scholar
  6. Hoofd, L., Breepoel, P.M., and de Koning, J., 1981, Facilitation of oxygen diffusion in hemoglobin solutions: new theoretical aspects, in: “Oxygen Transport to Tissue”, Adv. Physiol. Sci. Vol. 25, A.G.B. Kovách, E. Dora, M. Kessler, I.A. Silver, eds., Pergamon Press, Akadémiai Kiadó, Budapest, p. 321.Google Scholar
  7. Koning, J. de, Hoofd, L.J.C., and Breepoel, P.M., 1981a, Facilitation of oxygen diffusion in hemoglobin solutions: influence of various salt concentrations, in: “Oxygen Transport to Tissue”, Adv. Physiol. Sci. Vol. 25, A.G.B. Kovách, E. Dóra, M. Kessler, I.A. Silver, eds., Pergamon Press, Akadémiai Kiadó, Budapest, p. 323.Google Scholar
  8. Koning, J. de, Hoofd, L.J.C., and Kreuzer, F., 1981b, Oxygen transport and the function of myoglobin, Pflügers Arch., 389: 211.PubMedCrossRefGoogle Scholar
  9. Koning, J. de, Stroeve, P., and Meldon, J.H., 1978, Electrical potentials during carbon dioxide transport in hemoglobin solutions, in: “Oxygen Transport to Tissue — III”, Adv. Exp. Med. Biol. Vol. 94, I.A. Silver, M. Erecínska, H.I. Bicher, eds., Plenum Press, New York — London, p. 181.Google Scholar
  10. Kreuzer, F., 1970, Facilitated diffusion of oxygen and its possible significance; a review, Respir. Physiol., 9: 1PubMedCrossRefGoogle Scholar
  11. Kreuzer, F., and Hoofd, L.J.C., 1982, Facilitated diffusion of O2 and CO2, in; “Handbook of Physiology: Respiration”, American Physiological Society, Washington, D.C., in press.Google Scholar
  12. Kunst, M., and Warman, J.M., 1980, Proton mobility in ice, Nature, 288: 465.CrossRefGoogle Scholar
  13. Meldon, J.H., 1975, Theory of the effect of diffusion potentials on the transport of carbon dioxide in protein solutions, 5th Intern. Biophysics Congr., Copenhagen, Abstract 413.Google Scholar
  14. Meldon, J.H., de Koning, J., and Stroeve, P., 1978, Electrical potentials induced by CO2 gradients in protein solutions and their role in CO2 transport, Bioelectrochem. Bioenerg., 5: 77.CrossRefGoogle Scholar
  15. Rollema, H.S., de Bruin, S.H., Janssen, L.H.M., and van Os, G.A.J., 1975, The effect of potassium chloride on the Bohr effect of human hemoglobin, J. Biol. Chem., 250: 1333.PubMedGoogle Scholar
  16. Scholander, P.F., 1960, Oxygen transport through hemoglobin solutions, Science, 131: 585.PubMedCrossRefGoogle Scholar
  17. Spaan, J.A.E., Kreuzer, F., and van Welny, F.K., 1980, Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions, Pflügers Arch., 384: 241.PubMedCrossRefGoogle Scholar
  18. Stroeve, P., and Ziegler, E., 1980, The transport of carbon dioxide in high molecular weight buffer solutions, Chem. Eng. Commun., 6: 81.CrossRefGoogle Scholar
  19. Wittenberg, J.B., 1959, Oxygen transport — a new function proposed for myoglobin, Biol. Bull., 117: 402.Google Scholar
  20. Wittenberg, J.B., 1966, The molecular mechanism of hemoglobin-facilitated oxygen diffusion, J. Biol. Chem., 241: 104.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • L. Hoofd
    • 1
  • P. Breepoel
    • 1
  • F. Kreuzer
    • 1
  1. 1.Department of PhysiologyUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations