Skip to main content

Cessation of Capillary Blood Flow Induced by Localized Application of Carbon Dioxide

  • Chapter
Oxygen Transport to Tissue-V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 169))

  • 118 Accesses

Abstract

A localized pulmonary hypercapnia can be produced by placing a small plastic ring chamber on an exposed lung surface of anesthetized bullfrogs and by introducing hypercapnic gas mixtures in it (Koyama and Horimoto, 1982). An introduction of 10% CO2 into the space formed by the ring chamber and the lung surface caused a reduction in the mean flow velocity in both arterioles and capillaries. A decrement in arteriolar diameter was observed at the same time. These results suggested a vasoconstriction of arterioles exposed to the hypercapnia. However, it remained unknown whether the reduction in capillary flow was primarily induced by a direct effect of CO2 on the capillary bed or secondarily by changes in arterioles. The present study was designed to study this aspect by reducing greatly the test area on the lung surface to such a diameter that the only vessels coming in contact with the gas are lung capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barer, G.R., and McCurrie, J.R., 1969, Pulmonary responses in the cat; The effects and interrelationship of drugs, hypoxia and hypercapnia, Quart. J. Exp. Physiol., 54: 156–172.

    PubMed  CAS  Google Scholar 

  • Borst, H.G., Whittenberger, J.L., Berglund, E., and McGregor, M., 1957, Effects of unilateral hypoxia and hypercapnia on pulmonary blood flow distribution in the dog, Am. J. Physiol., 191: 446–452.

    PubMed  CAS  Google Scholar 

  • Fishman, A.P., Fritts, H.W., and Cournand, A., 1960, Effects of breathing carbon dioxide upon the pulmonary circulation, Circulation, 22: 220–225.

    Article  PubMed  CAS  Google Scholar 

  • Horimoto, M., Koyama, T., Kikuchi, Y., Kakiuchi, Y., and Murao, M., 1981, Effect of transpulmonary pressure on blood flow velocity in pulmonary microvessels, Respir. Physiol., 43: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Hyman, A.L., and Kadowitz, P.J., 1957, Effects of alveolar and perfusion hypoxia and hypercapnia on pulmonary vascular resistance in the lamb, J. Appl. Physiol., 228: 397–403.

    Google Scholar 

  • Kato, M., and Staub, N.C., 1966, Response of small pulmonary arteries to unilobular hypoxia and hypercapnia, Circ. Res., 19: 426–440.

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi, Y., Horimoto, M., and Koyama, T., 1979, Reduced deformability of erythrocytes exposed to hypercapnia, Experientia, 35: 343–344.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, T., Kikuchi, Y., Horimoto, M., Kakiuchi, Y., Tsushima, N., and Nitta, J., 1981, White blood cell adhesion to endothelium and rheological behavior in microvessels of over inflated frog’s lung, Biorheol., 19: 221–228.

    Google Scholar 

  • Koyama, T., and Horimoto, M., 1982, Pulmonary microcirculatory response to localized hypercapnia, J. Appl. Physiol., in press.

    Google Scholar 

  • Stroud, R.C., and Rahn, H., 1953, Effect of O2 and CO2 tensions upon the resistance of pulmonary blood vessels, Am. J. Physiol., 172: 211–220.

    PubMed  CAS  Google Scholar 

  • Viles, P.H., and Shepherd, J.T., 1968, Evidence for a dilator action of carbon dioxide on the pulmonary vessels of the cat, Circ. Res., 22: 325–333.

    Article  PubMed  CAS  Google Scholar 

  • Weibel, E.R., 1964, Morphometrics of the lung, in: “Handbook of Physiology”, Sect. 3: “Respiration”, Vol. 1, pp. 285–307, W.O. Fenn, H. Rahn, eds., Am. Physiol. Society, Washington D.C.

    Google Scholar 

  • Weigelt, H., 1982, Die spezialisierte Endothelzelle — erregbare Zelle und mechanischer Effektor der Mikrozirkulation, Funkt. Biol. Med., 1: 53–60.

    Google Scholar 

  • Weigelt, H., Fujii, T., Lübbers, D.W., and Hauck, G., 1981, Specialized endothelial cells in the frog mesentery — attempt of an electrophysiological characterization, Biblthca. Anat., 20: 89–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Koyama, T., Horimoto, M., Kikuchi, Y. (1984). Cessation of Capillary Blood Flow Induced by Localized Application of Carbon Dioxide. In: Lübbers, D.W., Acker, H., Leniger-Follert, E., Goldstrick, T.K. (eds) Oxygen Transport to Tissue-V. Advances in Experimental Medicine and Biology, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1188-1_58

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1188-1_58

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1190-4

  • Online ISBN: 978-1-4684-1188-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics