Skip to main content

Local Regulation of Blood Flow

  • Chapter
Book cover Oxygen Transport to Tissue-V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 169))

Abstract

In vascular smooth muscle as in other excitable structures the K+ permeability is considerably higher than the Na+ permeability (PK: PNa = 1: O.024) (Siegel and Schneider, 1981). Therefore, the intra- and extracellular K+ ion distribution play a decisive role in the passive potential genesis. Electromechanical coupling provided, a change of internal and/or external K+ concentration can thus influence vascular tone. With the aid of spectroscopic and morphometric data the K+ fraction located in the intracellular space of smooth muscle cells is calculated to be 6/7 of the total potassium in a vessel wall, that located in the extracellular space to be 1/7. 43% of the extracellular potassium is distributed in the interstitial fluid space, while 57% is bound to connective tissue structures. The microdynamic K+ binding properties of the latter fraction permit, under pH or concentration shifts of other cation species, a K+ release from or adsorption to the polyanionic macromolecules of vascular connective tissue, which can considerably alter the external K+ concentration close to the cell membrane (Siegel et al., 1977a). Further, it is known from studies with nuclear magnetic resonance spectroscopy that a shift in proton concentration not only changes the binding properties of cations to polyelectrolytes but also directly alters their conformation (Gustavsson et al., 1981). Thus, besides the effect of K+ ions on vascular smooth muscle cells, we have also studied the influence of the external pH value on membrane permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alburger, D.E., and Harris, W.R., 1969, Decay scheme of Mg28, Physiol. Rev., 185: 1495.

    Article  CAS  Google Scholar 

  • Baumgarten, C.M., and Isenberg, G., 1977, Depletion and accumulation of potassium in the extracellular clefts of cardiac Purkinje fibers during voltage clamp hyperpolarization, Pflügers Arch., 368: 19.

    Article  PubMed  CAS  Google Scholar 

  • Bolton, T.B., 1979, Mechanisms of action of transmitters and other substances on smooth muscle, Physiol. Rev., 59: 606.

    PubMed  CAS  Google Scholar 

  • Bolton, T.B., Tomita, T., and Vassort, G., 1981, Voltage clamp and the measurement of ionic conductances in smooth muscle, in; “Smooth Muscle: An Assessment of Current Knowledge”, E. Bülbring, A.F. Brading, A.W. Jones, T. Tomita, eds., E. Arnold, London.

    Google Scholar 

  • Brace, R.A., Anderson, D.K., Chen, W.-T., Scott, J.B., and Haddy, F.J., 1974, Local effects of hypokalemia on coronary resistance and myocardial contractile force, Am. J. Physiol., 227: 59O.

    Google Scholar 

  • Casteels, R., Kitamura, K., Kuriyama, H., and Suzuki, H., 1977, Excitation-contraction coupling in the smooth muscle cells of the rabbit main pulmonary artery, J. Physiol. (Lond.), 271: 63.

    CAS  Google Scholar 

  • Chamley-Campbell, J., Campbell, G.R., and Ross, R., 1979, The smooth muscle cell in culture, Physiol. Rev., 59: 1.

    PubMed  CAS  Google Scholar 

  • Cohen, I., Daut, J., and Noble, D., 1976, The effects of potassium and temperature on the pace-maker current, ***line equation***, in Purkinje fibres, J. Physiol. (Lond.), 260: 55.

    CAS  Google Scholar 

  • Gustavsson, H., Siegel, G., Lindman, B., and Fransson, L.-Å., 1981, 23Na+-NMR studies of cation binding to multi-chain and single-chain glycosaminoglycan peptides, Biochim. Biophys. Acta, 677: 23.

    Article  PubMed  CAS  Google Scholar 

  • Haas, H.G., Glitsch, H.G., Kern, R., Hantsch, F., and Siegel, G., 1966, Kalium-Fluxe und Membranpotential am Froschvorhof in Abhängigkeit von der Kalium-Außenkonzentration, Pflügers Arch. Ges. Physiol., 288: 43.

    Article  CAS  Google Scholar 

  • Harder, D.R., 1982, Effect of H+ and elevated Pco2 on membrane electrical properties of rat cerebral arteries, Pflügers Arch., 394: 182.

    Article  PubMed  CAS  Google Scholar 

  • Ito, Y., Kitamura, K., and Kuriyama, H., 1979, Effects of acetylcholine and catecholamines on the smooth muscle cell of the porcine coronary artery, J. Physiol. (Lond.), 294: 595.

    CAS  Google Scholar 

  • Kennedy, J.F., 1979, “Proteoglycans — Biological and Chemical Aspects in Human Life”, Elsevier Scientific Publ. Comp., Amsterdam-Oxford-New York.

    Google Scholar 

  • Kline, R.P., and Kupersmith, J., 1982, Effects of extracellular potassium accumulation and sodium pump activation on automatic canine Purkinje fibres, J. Physiol. (Lond.), 324: 507.

    CAS  Google Scholar 

  • Kuriyama, H., and Suzuki, H., 1978, Electrical property and chemical sensitivity of vascular smooth muscles in normotensive and spontaneously hypersensitive rats, J. Physiol. (Lond.), 285: 409.

    CAS  Google Scholar 

  • Kuschinsky, W., Wahl, M., Bosse, O., and Thurau, K., 1972, Perivascular potassium and pH as determinants of local pial arterial diameter in cats, Cir. Res., 31: 240.

    Article  CAS  Google Scholar 

  • Lindman, B., and Forsén, S., 1976, “Chlorine, Bromine and Iodine NMR: Physico-chemical and Biological Applications”, Springer, Berlin-Heidelberg-New York.

    Book  Google Scholar 

  • Marquardt, D.L., 1963, An algorithm for least squares estimates of nonlinear parameters, J. Siam., 11: 431.

    Google Scholar 

  • Rodén, L., 1980, Structure and metabolism of connective tissue proteoglycans, in: “The Biochemistry of Glycoproteins and Proteoglycans”, W.J. Lennarz, ed., Plenum Press, New York-London.

    Google Scholar 

  • Scott, J.B., Fröhlich, E.D., Hardin, R.A., and Haddy, F.J., 1961, Na+, K+, Ca++, and Mg++ action on coronary vascular resistance in the dog heart, Am. J. Physiol., 201: 1095.

    PubMed  CAS  Google Scholar 

  • Siegel, G., 1981, The effect of membrane protonation on ionic permeabilities in vascular smooth muscle, Pflügers Arch., 391: R36.

    Google Scholar 

  • Siegel, G., 1982, The effect of external pH changes on Na+ and K+ permeabilities in the smooth muscle fibres membrane of canine cerebral vessels, J. Physiol. (Lond.), 329: 56P.

    CAS  Google Scholar 

  • Siegel, G., Ehehalt, R., Gustavsson, H., and Fransson, L.-Ä., 1977a, Ion binding properties of vascular connective tissue, in: “Excitation-contraction Coupling in Smooth Muscle”, R. Casteels, T. Godfraind, and J.C. Rüegg, eds., Elsevier/North-Holland Biomedical Press, Amsterdam-New York-Oxford.

    Google Scholar 

  • Siegel, G., Gustavsson, H., Ehehalt, R., and Lindman, B., 1977b, The role of membrane potential in the regulation of vascular tone, in: Recent Advances in Basic Microcirculatory Research, Bibl. Anat., 15, D.W. Lewis, ed., Karger, Basel-München-Paris-London-New York-Sidney.

    Google Scholar 

  • Siegel, G., Kämpe, Ch., and Ebeling, B.J., 1981a, pH-dependent myogenic control in cerebral vascular smooth muscle, in: “Cerebral Microcirculation and Metabolism”, J. Cervos-Navarro, E. Fritschka, eds., Raven Press, New York.

    Google Scholar 

  • Siegel, G., Niesert, G., Ehehalt, R., and Bertsche, O., 1976a, Membrane basis of vascular regulation, in: “Ionic Actions on Vascular Smooth Muscle”, E. Betz, ed., Springer, Berlin-Heidelberg-New York.

    Google Scholar 

  • Siegel, G., Rettig, W., Kämpe, Ch., Ebeling, B.J., and Walter, A., 1980a, Potassium fluxes in cerebral arteries, in: “Pathophysiology and Pharmacotherapy of Cerebrovascular Disorders”, E. Betz, J. Grote, D. Heuser, R. Wüllenweber, eds., G. Witzstrock, Baden-Baden-Köln-New York.

    Google Scholar 

  • Siegel, G., Roedel, H., and Hofer, H.W., 1976b, Basic rhythms in vascular smooth muscle, in: “Smooth Muscle Pharmacology and Physiology”, INSERM Colloque, Vol. 50, M. Worcel, G. Vassort, eds., Editions INSERM, Paris.

    Google Scholar 

  • Siegel, G., Roedel, H., Jäger, R., and Bertsche, O., 1974, Relationship between membrane potential of vascular smooth muscle and external K+ concentration, Pflügers Arch., 347: R14.

    Google Scholar 

  • Siegel, G., Roedel, H., Nolte, J., Hofer, H.W., and Bertsche, O., 1976c, Ionic composition and ion exchange in vascular smooth muscle, in: “Physiology of Smooth Muscle”, E. Bülbring, M.F. Shuba, eds., Raven Press, New York.

    Google Scholar 

  • Siegel, G., and Schneider, W., 1981, Anions, cations, membrane potential, and relaxation, in: “Vasodilatation”, P.M. Vanhoutte, I. Leusen, eds., Raven Press, New York.

    Google Scholar 

  • Siegel, G., Walter, A., Gustavsson, H., and Lindman, B., 1981b, Magnesium and membrane function in vascular smooth muscle, Artery, 9: 232.

    PubMed  CAS  Google Scholar 

  • Siegel, G., Walter, A., Rettig, W., Kämpe, Ch., Ebeling, B.J., and Bertsche, O., 1980b, Sodium compartmens in the arterial wall, in: “Intracellular Electrolytes and Arterial Hypertension”, H. Zumkley, H. Losse, eds., Thieme, Stuttgart-New York.

    Google Scholar 

  • Suzuki, H., 1981, Effects of endogeneous and exogeneous noradrenaline on the smooth muscle of guinea-pig mesenteric vein, J. Physiol. (Lond.), 321: 495.

    CAS  Google Scholar 

  • Vanhoutte, P., and Clement, D., 1968, Effect of pH and Pco2 changes on the reactivity of isolated venous smooth muscle, Arch. Int. Physiol. Biochim., 76: 144.

    Article  Google Scholar 

  • Zidek, W., and Lange-Asschenfeldt, H., 1980, Continuous measurements of extracellular ion activities in rat carotid artery by liquid ion exchanger microelectrodes, in: “Intracellular Electrolytes and Arterial Hypertension”, H. Zumkley, H. Losse, eds., Thieme, Stuttgart-New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Siegel, G., Walter, A., Thiel, M., Ebeling, B.J. (1984). Local Regulation of Blood Flow. In: Lübbers, D.W., Acker, H., Leniger-Follert, E., Goldstrick, T.K. (eds) Oxygen Transport to Tissue-V. Advances in Experimental Medicine and Biology, vol 169. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1188-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1188-1_47

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1190-4

  • Online ISBN: 978-1-4684-1188-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics