Advertisement

Microcirculation and Po2 in Skeletal Muscle During Respiratory Hypoxia and Stimulation

  • D. K. Harrison
  • J. Höper
  • H. Günther
  • H. Vogel
  • K. H. Frank
  • M. Brunner
  • R. Ellermann
  • M. Kessler
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)

Abstract

The regulation of blood flow to skeletal muscle has, for many years, been the subject of much research (Hudlická, 1973) with the result that nowadays many phenomena can be explained by the presence of local oxygen sensors which serve to regulate the flow in order to maintain an adequate oxygen supply to the tissue (Granger and Shepherd, 1973). For example, the vasodilation which occurs during hypoxia almost certainly takes place as a result of signals from such sensors, and there is strong evidence to suggest that the majority of these sensors may be located in the tissue cells (Kessler et al., 1983).

Keywords

Femoral Flow Femoral Nerve Capillary Flow Capillary Blood Flow Sartorius Muscle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgärtl, H., and Lübbers, D.W., 1973, Platinum needle electrode for Polarographic measurement of oxygen and hydrogen, in: “Oxygen Supply. Theoretical and Practical Aspects of Oxygen Supply and Microcirculation of Tissue”, M. Kessler, D.F. Bruley, L.C. Clark Jr., D.W. Lübbers, I.A. Silver, J. Strauss, eds., Urban & Schwarzenberg, München-Berlin-Wien, pp. 130–136.Google Scholar
  2. Brunner, M., Kastner, N., Schabert, A., Höper, J., and Kessler, M., 1981, On-line Verarbeitung von Hämoglobin-Reflexionsspektren hoher Repetitionsraten, in; “Medizinische Informatik und Statistik 28”, S. Koller, P.L. Reichertz, K. überla, eds., Springer, Berlin-Heidelberg-New York.Google Scholar
  3. Granger, H.J., and Shepherd, A.P., 1973, Intrinsic microvascular control of tissue oxygen delivery, Microvasc. Res., 5: 49.PubMedCrossRefGoogle Scholar
  4. Höper, J., 1983, Correlation between redox-state of NADH(P)H and total flow in the perfused rat liver, this volume.Google Scholar
  5. Höper, J., and Kessler, M., 1981, Po2 and sodium dependent mechanism regulating liver blood flow, in; “Oxygen Transport to Tissue”, Adv. Physiol. Sci., Vol. 25, A.G.B. Kovách, E. Dora, M. Kessler, I.A. Silver, eds., Pergamon Press, Akadémiai Kiadó, Budapest.Google Scholar
  6. Hudlická, O., 1973, “Muscle Blood Flow”, Swets and Zeitlinger, Amsterdam.Google Scholar
  7. Hutton, H., 1970, Untersuchung nichtstationärer Austauschvorgänge in gekoppelten Konvektions-Diffusions-Systemen, Abh. Akad. Wiss. Lit., Mainz.Google Scholar
  8. Kessler, M., 1983, Tissue O2 supply under normal and pathological conditions, this volume.Google Scholar
  9. Kessler, M., Höper, J., Lübbers, D.W., and Ji, S., 1981, Local factors affecting regulation of microflow, O2 uptake and energy metabolism, in: “Oxygen Transport to Tissue”, Adv. Physiol. Sci., Vol. 25, A. Kovách, E. Dóra, M. Kessler, I.A. Silver, eds., Pergamon Press, Akadémiai Kiadó, Budapest.Google Scholar
  10. Kessler, M., and Lübbers, D.W., 1966, Aufbau und Anwendungsmöglichkeiten verschiedener Po2-Elektroden, Pflügers Arch. Ges. Physiol., 291: R82.Google Scholar
  11. Krumme, B.A., Strehlau, R., and Kessler, M., 1975, Hydrogen clearance measurements on the liver surface in situ with the multiwire electrode, Arzneim.-Forsch. (Drug Res.), 25: 1666.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • D. K. Harrison
    • 1
  • J. Höper
    • 1
  • H. Günther
    • 1
  • H. Vogel
    • 1
  • K. H. Frank
    • 1
  • M. Brunner
    • 1
  • R. Ellermann
    • 1
  • M. Kessler
    • 1
  1. 1.Institut für Physiologie und KardiologieUniversität Erlangen-NürnbergErlangenGermany

Personalised recommendations