Advertisement

Diffusion-Perfusion Relationships in Skeletal Muscle: Models and Experimental Evidence from Inert Gas Washout

  • J. Piiper
  • M. Meyer
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)

Abstract

The aim of the present research was to study the basic gas exchange mechanisms — diffusion and perfusion — and their interaction in order to better understand O2 and CO2 exchange in muscle tissue. Instead of the respiratory gases O2 and CO2, inert gases were used because their transfer behaviour is more easily analyzed due to absence of chemical combination and of comsumption or production.

Keywords

Washout Rate Muscle Blood Flow Extensor Digitorum Longus Muscle Tritiated Water Venous Vessel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aukland, K., 1967, Renal medullary heat clearance in the dog, Circ. Res., 20: 194–203.PubMedCrossRefGoogle Scholar
  2. Bassingthwaighte, J.B., Strandell, T., and Yipintsoi, T., 1970, Flow limited washout of diffusible solutes from the heart, in: “Benzon Symposium II: Capillary Permeability”, C. Crone, N.A. Lassen, eds., Munksgaard, Copenhagen, pp.580–585.Google Scholar
  3. Bazett, H.C., Love, L., Newton, M., Eisenburg, L., Day, R., and Forster, R., 1948, Temperature changes in blood flowing in arteries and veins in man, J. Appl. Physiol., 1: 3–19.PubMedGoogle Scholar
  4. Grunewald, W.A., and Sowa, W., 1977, Capillary structures and O2 supply to tissue, Rev. Physiol. Biochem. Pharmacol., 77: 149–209.PubMedCrossRefGoogle Scholar
  5. Kety, S.S., 1951, Theory and applications of the exchange of inert gas at the lungs and tissues, Pharmacol. Rev., 3: 1–41.PubMedGoogle Scholar
  6. Kruhøffer, P., 1970, Discussion remark, in: “Benzon Symposium II: Capillary Permeability”, C. Crone, N.A. Lassen, eds., Munksgaard, Copenhagen, pp.597-598.Google Scholar
  7. Ohta, Y., Song, S.H., Groom, A.C., and Farhi, L.E., 1978, Is inert gas washout from tissues limited by diffusion? J. Appl. Physiol., 45: 903–9O7.PubMedGoogle Scholar
  8. Paradise, N.F., Swayze, C.R., Shin, D.H., and Fox, I.J., 1971, Perfusion heterogeneity in skeletal muscle using tritiated water, Am. J. Physiol., 220: 1107–1115.PubMedGoogle Scholar
  9. Pendergast, D., Cerretelli, P., Heisler, N., Marconi, C., Meyer, M., and Piiper, J., 1982, Muscle blood flow distribution in resting and exercising dog gastrocnemius, Fed. Proc., 41: 168O.Google Scholar
  10. Piiper, J., 1959, Durchblutung der arterio-venösen Anastomosen und Wärmeaustausch an der Hundeextremität, Pflügers Arch. Ges. Physiol., 268: 242–253.CrossRefGoogle Scholar
  11. Sejrsen, P., 1970, Convection and diffusion of inert gases in cutaneous,subcutaneous, and skeletal muscle tissue, in: “Benzon Symposium II: Capillary Permeability”, C. Crone, N.A. Lassen, eds., Munksgaard, Copenhagen, pp. 586–596.Google Scholar
  12. Sejrsen, P., and Tønnesen, K.H., 1968, Inert gas diffusion method for measurement of blood flow using saturation technique: comparison with directly measured blood flow in isolated gastrocnemius muscle of the cat, Circ. Res., 22: 679–693.PubMedCrossRefGoogle Scholar
  13. Sparks, H.V., and Mohrman, D.E., 1977, Heterogeneity of flow as an explanation of the multiexponential washout of inert gas from skeletal muscle, Microvasc. Res., 13: 181–184.CrossRefGoogle Scholar
  14. Tønnesen, K.H., and Sejrsen, P., 1967, Inert gas diffusion method for measurement of blood flow: comparison of bolus injection to directly measured blood flow in the isolated gastrocnemius muscle, Circ. Res., 20: 552–564.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Piiper
    • 1
  • M. Meyer
    • 1
  1. 1.Abteilung PhysiologieMax-Planck-Institut für experimentelle MedizinGöttingenGermany

Personalised recommendations