Advertisement

Deleterious Effects of Oxygen Radicals on Reoxygenated Myocardial Cells

  • Y. Gauduel
  • M. A. Duvelleroy
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)

Abstract

Oxygen deprivation induces severe damage in cardiac muscle. The ultrastructural leions, which include mitochondrial and cellular swellings and structural defects in cell plasma membranes, are accentuated by the duration of the hypoxic period (Hearse et al., 1973).

Keywords

Oxygen Deprivation Hypoxic Period Creatine Kinase Release Hypoxic Heart Reoxygenation Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebi, H., 1974, in: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, ed., Academic Press, New York.Google Scholar
  2. Antonini, E., Brunori, M., Greenwood, C., and Malmström, B.G., 1970, Catalytic mechanism of cytochrome oxidase, Nature, 228: 936.PubMedCrossRefGoogle Scholar
  3. Boveris, A., 1977, in: “Oxygen and Physiological Funtion”, F.F. Jöbsis, ed., Professional Information Library, Washington.Google Scholar
  4. Chance, B., Sies, H., and Boveris, A., 1979, Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59: 527.PubMedGoogle Scholar
  5. Czapski, G., and Ilan, Y.A., 1978, On the generation of the hydroxylation agent from superoxide radical. Can the Haber-Weiss reaction be the source of OH radicals?, Photochem. Photobiol., 28: 651.CrossRefGoogle Scholar
  6. Del Maestro, R.F., 1980, An approach to free radicals in medicine and biology, Acta Physiol. Scand., Suppl. 492: 153.Google Scholar
  7. Feuvray, D., and de Leiris, J., 1975, Ultrastructural modifications induced by reoxygenation in the anoxic isolated rat heart perfused without exogenous substrate, J. M. C. C, 7: 307.Google Scholar
  8. Fong, K.L., Mc Cay, P.B., Poyer, J.L., Leele, B.B., and Misra, H., 1973, Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity, J. Biol. Chenu, 248: 7792.Google Scholar
  9. Fridovich, I., 1975, Superoxide dismutases, Ann. Rev. Biochem., 44: 147.PubMedCrossRefGoogle Scholar
  10. Fridovich, I., 1978, Superoxide radicals, superoxide dismutases and the aerobic life style, Photochem. Photobiol., 28: 733.PubMedCrossRefGoogle Scholar
  11. Ganote, C.E., and Kaltenbach, J.P., 1979, Oxygen-induced enzyme release: early events and a proposed mechanism, J. Mol. Cell. Cardiol., 11: 389.PubMedCrossRefGoogle Scholar
  12. Ganote, C.E., Seabra Gomes, R., Nayler, W.G., and Jennings, R.B., 1975, Irreversible myocardial injury in anoxic perfused rat hearts, Am. J. Pathol., 80: 419.PubMedGoogle Scholar
  13. Gauduel, Y., Karagueuzian, H.S., and de Leiris, J., 1979, Deleterious effects of endogenous catecholamines ön hypoxic myocardial cells following reoxygenation, J. Mol. Cell. Cardiol., 11: 717.PubMedCrossRefGoogle Scholar
  14. Gutmann, I., and Wahlefeld, A.W., 1974, in: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, ed., Academic Press, New York.Google Scholar
  15. Halliwell, B., 1978, Biochemical mechanisms accounting for the toxic action of oxygen on living organisms: the key role of superoxide dismutase, Cell Biol. Int. Rep., 2: 113.PubMedCrossRefGoogle Scholar
  16. Haugaard, N., 1968, Cellular mechanisms of oxygen toxicity, Physiol. Rev., 48: 312.Google Scholar
  17. Hearse, D.J., 1978, The oxygen paradox and the calcium paradox: two facets of the same problem?, J. Mol. Cell. Cardiol., 10: 641.PubMedCrossRefGoogle Scholar
  18. Hearse, D.J., Humphrey, S.M., and Chain, E.B., 1973, Abrupt reoxygenation of the anoxic potassium arrested perfused rat heart: a study of myocardial enzyme release, J. Mol. Cell. Cardiol., 5: 395.PubMedCrossRefGoogle Scholar
  19. Hunter, F.E., Scott, J.A., Hoffsten, P.E., Gebicki, J.M., Weinstein, J., and Schneider, A., 1964, Studies on the mechanism of swelling lysis and disintegration of isolated liver mitochondria exposed to mixtures of oxidized and reduced glutathione, J. Biol. Chem., 239: 614.PubMedGoogle Scholar
  20. Kosower, N.S., and Kosower, E.M., 1976, The glutathione-glutathione disulfide system, in: “Free Radicals in Biology”, W.A. Pryor, ed., Academic Press, London.Google Scholar
  21. Langendorff, O., 1895, Untersuchungen am überlebenden Säugetierher-zen, Pflügers Arch. Ges. Physiol., 61: 251.Google Scholar
  22. Loschen, G., Azzi, A., and Flohe, L., 1973, Mitochondrial H2O2 formation: relationship with energy conservation, FEBS Lett., 33: 89.CrossRefGoogle Scholar
  23. Narabayashi, H., Takeshige, K., and Minakami, S., 1982, Alteration of inner membrane components and damage to electron transfer activities of bovine heart submitochondrial particles induced by NADPH dependent lipid peroxidation, Biochem. J., 202: 97.PubMedGoogle Scholar
  24. Nohl, H., and Hegner, D., 1978a, Evidence for the existence of catalase in the matrix space of rat heart mitochondria, FEBS Lett., 89: 126.PubMedCrossRefGoogle Scholar
  25. Nohl, H., and Hegner, D., 1978b, Do mitochondria produce oxygen radicals “in vivo”?, Eur. J. Biochem., 82: 563.PubMedCrossRefGoogle Scholar
  26. Nohl, H., and Jordan, W., 1980, The metabolic fate of mitochondrial hydrogen peroxide, Eur. J. Biochem., 111: 203.PubMedCrossRefGoogle Scholar
  27. Pryor, W.A., 1966, “Free Radicals”, Mc Graw-Hill, New York.Google Scholar
  28. Pryor, W.A., 1976, in: “Free Radicals in Biology”, W.A. Pryor, ed., Academic Press, New York.Google Scholar
  29. Siegel, A.L., and Cohen, P.S., 1974, in: “Methods of Enzymatic Analysis”, H.U. Bergmeyer, ed., Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • Y. Gauduel
    • 1
  • M. A. Duvelleroy
    • 1
  1. 1.Laboratoire de BiophysiqueFernand Widal HospitalParisFrance

Personalised recommendations