Distribution of Myocardial Glucose Consumption Under Normal Conditions and During Isoprenaline and Dobutamine Infusion

  • W. Breull
  • M. Rubart
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)


Tracer microsphere studies on regional myocardial blood flow revealed an inhomogeneous distribution within the left ventricular wall under various experimental conditions. In the normal and the anesthetized closed chest dog as well as in isolated heart preparations blood flow to the subendocardial layers exceeds that to the subepicardial layers; ratios, calculated from subendocardial and subepicardial flow ranged from 1.1 to 1.8 (Flohr et al., 1973; Ypintsoi et al., 1973; Domenech et al., 1980) depending largely on the size of the particles applied. While it is a matter of discussion, which particle size can delineate nutritional blood flow in the myocardium, it is commonly accepted that under normal conditions a blood flow gradient between the subepi- and subendocardial layer exists. This blood flow pattern may be induced by a comparable pattern of myocardial metabolic rate. Measurements of sarcomere length in diastole and in systole (Sonnenblick et al., 1967), calculations of tension developed (Streeter et al., 1970) and the analysis of tissue oxygen clearance in acute ischemia (Winbury et al., 1981) in different layers of the left ventricular wall seem to support this hypothesis. By measuring local capillary oxygen saturation and local blood flow, Holtz et al. (1977) calculated peak values of oxygen consumption in the subendocardial region.


Myocardial Blood Flow Left Ventricular Wall Sarcomere Length Dobutamine Infusion Local Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergmeyer, H.U., 1974, “Methoden der enzymatischen Analyse”, Verlag Chemie, Weinheim.Google Scholar
  2. Bernsmeier, A., and Rudolph, W., 1962, Neue Ergebnisse liber Durchblutung und Substratversorgung des menschlichen Herzens, Münch. Med. Wochenschr., 104: 46–5O.PubMedGoogle Scholar
  3. Breull, W., Flohr, H., Schuchhardt, S., and Dohm, H., 1981, Transmural gradients in myocardial metabolic rate, Basic Res. Cardiol., 76: 399–403.PubMedCrossRefGoogle Scholar
  4. Buckberg, G.D., and Ross, G., 1973, Effects of isoprenaline on coronary blood flow: its distribution and myocardial performance, Cardiovasc. Res., 7: 429–437.PubMedCrossRefGoogle Scholar
  5. Domenech, R.J., and Maclellan, P.R., 1980, Transmural distribution of coronary blood flow during coronary ß2-adrenergic receptor activation in dogs, Circ. Res., 46: 29–36.PubMedCrossRefGoogle Scholar
  6. Flohr, H., Breull, W., Redel, D., and Dahners, H., 1973, Regional myocardial blood flow, Bibl. Anat., 11: 158–163.PubMedGoogle Scholar
  7. Hedberg, A., Minneman, K.P., and Molinoff, P.B., 1979, Regional distribution of ß1-and ß2-adrenoceptors in the right atrium and left ventricle of the cat and guinea pig heart, Brit. J. Pharmacol., 66: 505P.Google Scholar
  8. Holt, J., 1956, Estimation of the residual volume of the ventricle of the dog’s heart by two indicator-dilution techniques, Circ. Res., 4: 187.PubMedCrossRefGoogle Scholar
  9. Holtz, J., Grunewald, W.A., Manz, R., Restorff, W.V., and Bassenge, E., 1977, Intracapillary hemoglobin oxygen saturation and oxygen consumption in different layers of the left ventricular myocardium, Pfügers Arch., 370: 253–258.CrossRefGoogle Scholar
  10. Howorth, P.J.N., Gibbard, S., and Marks, V., 1966, Evaluation of a colorimetric method (Duncombe) of determination of plasma none-esterified fatty acids, Clin. Chim. Acta, 14: 69–73.PubMedCrossRefGoogle Scholar
  11. Neely, J.R., and Morgan, H.E., 1974, Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle, Ann. Rev. Physiol., 36: 413–459.CrossRefGoogle Scholar
  12. Opie, L.H., and Newsholme, E.A., 1967, The activities of fructose 1, 6-diphosphatase, phosphofructokinase and phosphoenolpyruvate carbokinase in white muscle and red muscle, Biochem. J., 103: 391–399.PubMedGoogle Scholar
  13. Reivich, M., Kuhl, D., Wolf, A., Greenberg, J., Phelps, M., Ido, T., Casella, V., Fowler, J., Hoffmann, E., Alavi, A., Som, P., and Sokoloff, L., 1979, The (18 F) fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man, Circ. Res., 44: 127–137.PubMedCrossRefGoogle Scholar
  14. Schelbert, H.R., Henze, E., Phelps, M.E., and Kuhl, D.E., 1982, Assessment of regional myocardial ischemia by positron-emission computed tomography, Am. Heart J., 103: 588–597.PubMedCrossRefGoogle Scholar
  15. Schmidt, F.H., 1961, Die enzymatische Bestimmung von Glukose und Fructose nebeneinander, Klin. Wochenschr., 39: 1244–1247.PubMedCrossRefGoogle Scholar
  16. Sokoloff, L., Reivich, M., Kennedy, C., des Rosiers, M.H., Patlak, CS., Pettigrew, K.D., Sakurada, O., and Shinohara, M., 1977, The (14-C)-deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat, J. Neurochenu, 28: 897.CrossRefGoogle Scholar
  17. Sonnenblick, E.H., Ross, J., Covell, J.W., Spotnitz, H.M., and Spiro, D., 1967, Ultrastructure of the heart in systole and diastole: changes in sarcomere length, Circ. Res., 21: 423–431.PubMedCrossRefGoogle Scholar
  18. Streeter, D.D., Vaishnav, R.N., Patel, D.J., Spotnitz, H.M., Ross, J., and Sonnenblick, E.H., 1970, Stress distribution in the canine left ventricle during diastole and systole, Biophys. J., 10: 345–363.PubMedCrossRefGoogle Scholar
  19. Takala, T.E.S., and Hassinen, I.E., 1981, Effect of mechanical work load on transmural distribution of glucose uptake in the isolated perfused rat heart, studied by regional deoxyglucose trapping, Circ. Res., 49: 62–69.PubMedCrossRefGoogle Scholar
  20. Winbury, M., Howe, B.B., and Weiss, H.R., 1971, Effect of nitroglycerine and dipyridamole on epicardial and endocardial oxygen tension — further evidence for redistribution of myocardial blood flow, J. Pharmacol. Exp. Therap., 176: 184–199.Google Scholar
  21. Ypintsoi, T., Dobbs, W.A., Scanion, P.D., Knopp, T.J., and Bassingthwaighte, J.B., 1973, Regional distribution of diffusible tracers and carbonized microspheres in the left ventricle of isolated dog hearts, Circ. Res., 33: 573–587.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • W. Breull
    • 1
  • M. Rubart
    • 1
  1. 1.Department of PhysiologyUniversity of BonnBonn 1Germany

Personalised recommendations