Advertisement

Metabolic Rate and Microcirculation

  • W. Kuschinksky
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)

Abstract

The first hypothesis about the dependency of microcirculation on the metabolic rate of the corresponding tissue was put forward more than a hundred years ago (Roy and Brown, 1879; Gaskell, 1880). “It is surely worth while to see whether it is not possible that the chemical changes going on in the organ itself may not directly bring about a dilation of the blood vessels of that organ, and so, without the intervention of the nervous system, regulate its own blood supply according to its own needs” (Gaskell, 1880). This hypothesis seemed reasonable, since this mechanism allows an adjustment of the blood flow to the actual demand of the tissue. This means an economical distribution of blood flow resulting in a low heart work and energy consumption. It also means a linkage between the blood flow and that parameter, which should be its final determinant, i.e. the metabolic rate of the tissue.

Keywords

Cerebral Blood Flow Glucose Utilization Regional Cerebral Blood Flow Local Blood Flow Local Cerebral Blood Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup, J., Heuser, D., Lassen, N.A., Nilsson, B., Norberg, K., and Siesjö, B.K., 1976, Evidence against H+ and K+ as the main factors in the regulation of cerebral blood flow during epileptic discharges, acute hypoxemia, amphetamine intoxication, and hypoglycemia. A microelectrode study, in.: “Ionic Actions on Vascular Smooth Muscle”, D. Betz, ed., Springer, Berlin-Heidelberg-New York.Google Scholar
  2. Astrup, J., Symon, L., Branston, N.M., and Lassen, N.A., 1977, Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia, Stroke, 8: 51.PubMedCrossRefGoogle Scholar
  3. Barcroft, H., 1963, Circulation in skeletal muscle, in.: “Handbook of Physiology”, Section 2, Vol. 2, Chapter 40, American Physiological Society, Williams & Wilkins, Baltimore.Google Scholar
  4. Berne, R.M., 1963, Cardiac nucleotides in hypoxia: possbile role in regulation of coronary blood flow, Am. J. Physiol., 204: 317.PubMedGoogle Scholar
  5. Berne, R.M., Rubio, R., and Curnish, R.R., 1974, Release of adenosine from ischemic brain. Effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides, Circ. Res., 35: 262.CrossRefGoogle Scholar
  6. Betz, E., and Csornai, M., 1978, Action and interaction of perivascular H+, K+ and Ca++ on pial arteries, Pflügers Arch., 374: 67.PubMedCrossRefGoogle Scholar
  7. Breemen, van, C., Farinas, B.R., Gerba, P., and McNaughton, E.D., 1972, Excitation-contraction coupling in rabbit aorta. Studied by the lanthanum method for measuring cellular calcium influx, Circ. Res., 30: 44.PubMedCrossRefGoogle Scholar
  8. Britton, S.L., Lutherer, L.O., and Davies, D.G., 1979, Effect of cerebral extracellular fluid acidity on total and regional cerebral blood flow, J. Appl. Physiol., 47: 818.PubMedGoogle Scholar
  9. Burnstock, G., Cocks, T., Kasakov, L., and Wong, H.K., 1978, Direct evidence of ATP release from non-adrenergic, non-cholinergic (“purinergic”) nerves in the guinea-pig taenia coli and bladder, Eur. J. Pharmacol., 49: 145.PubMedCrossRefGoogle Scholar
  10. Cameron, I.R., and Caronna, J., 1976, The effect of local changes in potassium and bicarbonate concentration on hypothalamic blood flow in the rabbit, J. Physiol., 262: 415.PubMedGoogle Scholar
  11. Chen, W.T., Brace, R.A., Scott, J.B., Anderson, D.K., and Haddy, F.J., 1972, The mechanism of the vasodilator action of potassium, Proc. Soc. Exp. Biol. Med., 140: 820.PubMedGoogle Scholar
  12. Cordingley, G.E., and Somjen, G.G., 1978, The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex, Brain Res., 151: 291.PubMedCrossRefGoogle Scholar
  13. Eckman, W.W., Phair, R.D., Fenstermacher, J.D., Patkak, C.S., Kennedy, C, and Sokoloff, L., 1975, Permeability limitation in estimation of local brain blood flow with (14C)antipyrine, Am. J. Physiol., 229: 215.PubMedGoogle Scholar
  14. Edvinsson, L., and MacKenzie, E.T., 1977, Amine mechanisms in the cerebral circulation, Pharmacol. Rev., 28: 275.Google Scholar
  15. Eklöf, B., Lassen, N.A., Nilsson, L., Norberg, S., Siesjö, B.K., and Torlöf, P., 1974, Regional cerebral blood flow in the rat measured by the tissue sampling technique; a critical evaluation using four indicators C14-antipyrine, C14-ethanol, H3-water and Xenon 133, Acta Physiol. Scand., 91: 1.PubMedCrossRefGoogle Scholar
  16. Freygang, W.H., Jr., and Sokoloff, L., 1958, Quantitative measurement of regional circulation in the central nervous system by the use of radioactive inert gas, Adv. Biol. Med. Phys., 6: 263.PubMedGoogle Scholar
  17. Fritz, H., and Hossmann, K.-A., 1979, Arterial air embolism in the cat brain, Stroke, 10: 581.PubMedCrossRefGoogle Scholar
  18. Gaskell, W.H., 1880, On the tonicity of the heart and blood vessel, J. Physiol. (London), 3: 48.PubMedGoogle Scholar
  19. Goldmann, S.S., Hass, W.K., and Ransohoff, J., 1980, Unsymmetrical alkyl aryl thiourea compounds for use as cerebral flow tracers, Am. J. Physiol., 238: H776.Google Scholar
  20. Goochee, C, Rasband, W., and Sokoloff, L., 1980, Computerized densitometry and color coding of (14C)deoxyglucose autoradiographs, Ann. Neurol., 7: 359.PubMedCrossRefGoogle Scholar
  21. Gregory, P.C., Boisvert, D.P.J., and Harper, A.M., 1980, Adenosine response on pial arteries, influence of CO2 and blood pressure, Pflügers Arch., 368: 187.CrossRefGoogle Scholar
  22. Haddy, F.J., and Scott, J.B., 1968, Metabolically linked vasoactive chemicals in local regulation of blood flow, Physiol. Rev., 48: 688.PubMedGoogle Scholar
  23. Haddy, F.J., and Scott, J.B., 1975, Metabolic factors in peripheral circulatory regulation, Fed. Proc., 34: 2006.PubMedGoogle Scholar
  24. Haller, C, and Kuschinsky, W., 1981, Reactivity of pial arteries to K+ and H+ before and after ischemia induced by air embolism, Microcirculation, 1: 141.Google Scholar
  25. Harris, R.J., Symon, L., Branston, N.M., and Bayhan, M., 1981, Changes in extracellular calcium activity in cerebral ischemia, J. Cereb. Blood Flow Metab., 1: 103.CrossRefGoogle Scholar
  26. Heinemann, ü., and Lux, H.D., 1975, Undershoots following stimulus induced rises of extracellular potassium concentration in cerebral cortex of cat, Brain Res., 93: 63.PubMedCrossRefGoogle Scholar
  27. Heinemann, U., Lux, H.D., and Gutnick, M.J., 1977, Extracellular free calcium and potassium during paroxysmal activity in the cerebral cortex of the cat, Exp. Brain Res., 27: 237.PubMedCrossRefGoogle Scholar
  28. Heuser, D., 1978, The significance of cortical extracellular H+, K+, and Ca++ activities for regulation of local cerebral blood flow under conditions of enhanced neuronal activity, in.: “Cerebral Vascular Smooth Muscle and its Control”, Ciba Foundation Symposium 56, Elsevier, Amsterdam.Google Scholar
  29. Hoedt-Rasmussen, K., Skinhoj, E., Paulson, O., Ewald, J., Bjerrum, J.K., Fahrenkrug, A., and Lassen, N.A., 1967, Regional cerebral blood flow in acute apoplexy, Arch. Neurol., 17: 271.PubMedCrossRefGoogle Scholar
  30. Hossmann, K.-A., Lechtape-Grüter, H., and Hossmann, V., 1973, The role of cerebral blood flow for the recovery of the brain after prolonged ischemia, Z. Neurol., 204: 281.PubMedCrossRefGoogle Scholar
  31. Hossmann, K.-A., Sakaki, S., and Zimmermann, V., 1977, Cation activities in reversible ischemia of the cat brain, Stroke, 8: 77.PubMedCrossRefGoogle Scholar
  32. Kety, S.S., and Schmidt, C.F., 1948, The effects of altered arterial tensions of carbon dioxide and oxygen on cerebral blood flow and cerebral oxygen consumption of normal young men, J. Clin. Invest., 27: 484.PubMedCrossRefGoogle Scholar
  33. Kontos, H.A., Raper, A.J., and Patterson, J.L., Jr., 1977, Analysis of vasoactivity of local pH, Pco2 and bicarbonate on pial vessels, Stroke, 8: 358.PubMedCrossRefGoogle Scholar
  34. Kuschinsky, W., 1982, Role of hydrogen ions in regulation of cerebral blood flow and other regional flows, Adv. Microcirc, 11: 1.Google Scholar
  35. Kuschinsky, W., Suda, S., Bünger, R., and Sokoloff, L., 1981a, The effect of norepinephrine on the local coupling between brain metabolism and blood flow, Pflügers Arch., Suppl., 391: R31.Google Scholar
  36. Kuschinsky, W., Suda, and Sokoloff, L., 1981b, Local cerebral glucose utilization and blood flow during metabolic acidosis, Am. J. Physiol., 241: H772.PubMedGoogle Scholar
  37. Kuschinsky, W., Suda, and Sokoloff, L., 1982, The relationship between local cerebral glucose utilization and local cerebral blood flow during the action of gamma-hydroxybutyrate, Pflügers Arch., 392: R10.Google Scholar
  38. Kuschinsky, W., and Wahl, M., 1978, Local chemical and neurogenic regulation of cerebral vascular resistance, Physiol. Rev., 58: 656.PubMedGoogle Scholar
  39. Kuschinsky, W., and Wahl, M., 1979, Perivascular pH and pial arterial diameter during bicuculline induced seizures in cats, Pflügers Arch., 382: 81.PubMedCrossRefGoogle Scholar
  40. Kuschinsky, W., Wahl, M., Bosse, O., and Thurau, K., 1972, Perivascular potassium and pH as determinants of local pial arterial diameter in cats. A microapplication study, Circ. Res., 31: 240.PubMedCrossRefGoogle Scholar
  41. Lacombe, P., Meric, P., and Seylaz, J., 1980, Validity of cerebral blood flow measurements obtained with quantitative tracer techniques, Brain Res. Rev., 2: 105.CrossRefGoogle Scholar
  42. Landau, W.M., Freygang, W.H., Jr., Rowland, L.P., Sokoloff, L., and Kety, S.S., 1955, The local circulation in the living brain; values in the unanesthetized and anesthetized cat, Trans. Am. Neurol. Assoc, 80: 125.Google Scholar
  43. Lassen, N.A., 1968, Brain extracellular pH: the main factor controlling cerebral blood flow, Scand. J. Clin. Lab. Invest., 22: 247.PubMedCrossRefGoogle Scholar
  44. Lierse, W., and Horstmann, E., 1965, Quantitative anatomy of the cerebral vascular bed with especial emphasis on homogeneity and inhomogeneity in small parts of the grey and white matter, Acta Neurol. Scand., Suppl., 14: 15.Google Scholar
  45. Mangold, R., Sokoloff, L., Conner, E., Kleinermann, J., Thermann, P.-O.G., and Kety, S.S., 1955, The effects of sleep and lack of sleep on the cerebral circulation and metabolism of normal young men, J. Clin. Invest., 34: 1092.PubMedCrossRefGoogle Scholar
  46. Mutsuga, N., Schuette, W.H., and Lewis, D.L., 1976, The contribution of local blood flow to the rapid clearance of potassium from the cortical extracellular space, Brain Res., 116: 431.PubMedCrossRefGoogle Scholar
  47. Nemoto, E.M., Snyder, J.V., Carroll, R.G., and Morita, H., 1975, Global ischemia in dogs: cerebrovascular CO2 reactivity and autoregulation, Stroke, 6: 425.PubMedCrossRefGoogle Scholar
  48. Nicholson, C, 1980, Modulation of extracellular calcium and its functional implications, Fed. Proc., 39: 1519.PubMedGoogle Scholar
  49. Ohno, K., Pettigrew, K.D., and Rapoport, S.I., 1979, Local cerebral blood flow in the conscious rat as measured with 14C-anti-pyrine, 14C-iodoantipyrine and 3H-nicotine, Stroke, 10: 62.PubMedCrossRefGoogle Scholar
  50. Pannier, J.L., Weyne, J., Demeester, G., and Leusen, I., 1972, Influence of changes in the acid base composition of the ventricular system on cerebral blood flow in cats, Pflügers Arch., 333: 337.PubMedCrossRefGoogle Scholar
  51. Paulson, O.B., 1970, Regional cerebral blood flow in apoplexy due to occlusion of the middle cerebral artery, Neurology, 20: 63.PubMedCrossRefGoogle Scholar
  52. Paulson, O.B., Lassen, N.A., and Skinhoj, E., 1970, Regional cerebral blood flow in apoplexy without arterial occlusion, Neurology, 20: 125.PubMedCrossRefGoogle Scholar
  53. Pull, I., and Mcllwain, H., 1972, Metabolism of (14C)adenine and dérivates by cerebral tissues, superfused and electrically stimulated, Biochem. J., 126: 965.PubMedGoogle Scholar
  54. Purves, M.J., 1978, Control of cerebral blood vessels: present state of the art, Ann. Neurol., 3: 377.PubMedCrossRefGoogle Scholar
  55. Raichle, M.E., Grubb, R.L., Gado, M.H., Eichung, J.O., and TerPogossian, M.M., 1976, Correlation between regional cerebral blood flow and oxidative metabolism, Arch. Neurol., 33: 523.PubMedCrossRefGoogle Scholar
  56. Rehncrona, S., Siesjö, B.K., and Westerburg, E., 1978, Adenosine and cyclic AMP in cerebral cortex of rats in hypoxia, status epilepticus and hypercapnia, Acta Physiol. Scand., 104: 453.PubMedCrossRefGoogle Scholar
  57. Reivich, M., Jehle, J., Sokoloff, L., and Kety, S.S., 1969, Measurement of regional cerebral blood flow with antipyrine-14 C in awake cats, J. Appl. Physiol., 27: 296.PubMedGoogle Scholar
  58. Roy, C, and Brown, J.G., 1879, the blood-pressure and its variations in the arterioles, capillaries and smaller veins, J. Physiol. (London), 2: 323.Google Scholar
  59. Rubio, R., Berne, R., Bookman, E.L., and Curnish, R., 1975, Relationship between adenosine concentration and oxygen supply in rat brain, Am. J. Physiol., 228-1896.Google Scholar
  60. Sakurada, O., Kennedy, C, Jehle, J., Brown, J.D., Carbin, G.L., and Sokoloff, L., 1978, Measurement of local cerebral blood flow with iodo(14C)antipyrine, Am. J. Physiol., 234: H59.PubMedGoogle Scholar
  61. Schädler, M., 1967, Proportionale Aktivierung von ATP-ase Aktivität und Kontraktionsspannung durch Ca++ Ionen in isolierten kontraktilen Strukturen verschiedener Muskelarten, Pflügers Arch. Ges. Physiol., 296: 70.CrossRefGoogle Scholar
  62. Schmidt, C.F., 1982, The early days of the indifferent gas method for measuring cerebral blood flow, J. Cereb. Blood Flow Metabol., 2: 1.CrossRefGoogle Scholar
  63. Schrader, J., Wahl, M., Kuschinsky, W., and Kreuzberg, G.W., 1980, Increase of adenosine content in cerebral cortex of the cat during bicuculline-induced seizure, Pflügers Arch., 387: 245.PubMedCrossRefGoogle Scholar
  64. Siesjö, B.K., 1978, “Brain Energy Metabolism”, John Wiley and Sons, Chichester.Google Scholar
  65. Skinhoj, E., 1966, Regulation of cerebral blood flow as a single function of the interstitial pH in the brain. A hypothesis, Acta Neurol. Scand., 42: 604.PubMedCrossRefGoogle Scholar
  66. Sokoloff, L., 1978, Mapping cerebral functional activity with radioactive deoxyglucose, Trends Neurosci., 1: 75.Google Scholar
  67. Sokoloff, L., 1981, Localization of functional activity in the central nervous system by measurement of glucose utilization with radioactive deoxyglucose, J. Cereb. Blood Flow Metab., 1: 7.PubMedCrossRefGoogle Scholar
  68. Sokoloff, L., Mangold, R., Wechsler, R.L., Kennedy, C, and Kety, S.S., 1955, The effect of mental arithmetic on cerebral circulation and metabolism, J. Clin. Invest., 34: 1101.PubMedCrossRefGoogle Scholar
  69. Sokoloff, L., Reivich, M., Kennedy, C., DesRosiers, M.H., Patlak, C.S., Pettigrew, K.D., Sakurada, O., and Shinohara, M., 1977, The (14C)deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat, J. Neurochenu., 28: 897.CrossRefGoogle Scholar
  70. Somjen, G.G., 1979, Extracellular potassium in the mammalian central nervous system, Ann. Rev. Physiol., 41: 159.CrossRefGoogle Scholar
  71. Symon, L., Branston, N.M., and Strong, A.J., 1976, Autoregulation in acute focal ischemia: an experimental study, Stroke, 7: 547.PubMedCrossRefGoogle Scholar
  72. Symon, L., Crockard, H.A., Dorsch, N.W.C., Branston, N.M., and Juhasz, J., 1975, Local cerebral blood flow and vascular reactivity in a chronic stable stroke in baboons, Stroke, 6: 482.PubMedCrossRefGoogle Scholar
  73. Symon, L., Pasztor, E., and Branston, N.M., 1974, The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons, Stroke, 5: 355.PubMedCrossRefGoogle Scholar
  74. Tomita, M., and Gotoh, F., 1981, Local cerebral blood flow values as estimated with diffusible tracers: validity of assumptions in normal and ischemic tissue, J. Cereb. Blood Flow Metab., 1: 403.PubMedCrossRefGoogle Scholar
  75. Urbanics, R., Leniger-Follert, E., and Lübbers, D.W., 1978, Time course of changes of extracellular H+ and K+ activities during and after direct electrical stimulation of the brain cortex, Pflügers Arch., 378: 47.PubMedCrossRefGoogle Scholar
  76. Wahl, M., and Kuschinsky, W., 1976, The dilatory action of adenosine on pial arteries of cats and its inhibition by theophylline, Pflügers Arch., 362: 55.PubMedCrossRefGoogle Scholar
  77. Wahl, M., and Kuschinsky, W., 1977, Influence of H+ and K+ on adenosine-induced dilation at pial arteries of cats, Blood Vessels, 14: 285.PubMedGoogle Scholar
  78. Wahlström, B., 1971, The effects of changes in the ionic environment on venous smooth muscle distribution of sodium and potassium, Acta Physiol. Scand, 82: 382.PubMedCrossRefGoogle Scholar
  79. Waltz, A.G., 1970, Effect of Paco2 on blood flow and microvascula-ture of ischemic and nonischemic cerebral cortex, Stroke, 1: 27.PubMedCrossRefGoogle Scholar
  80. Winn, H.R., Rubio, R., and Berne, R.M., 1981a, The role of adenosine in the regulation of cerebral blood flow, J. Cereb. Blood Flow Metab., 1: 239.PubMedCrossRefGoogle Scholar
  81. Winn, H.R., Rubio, R., and Berne, R.M., 1981b, Brain adenosine concentration during hypoxia in rats, Am. J. Physiol., 241: H235.PubMedGoogle Scholar
  82. Winn, H.R., Welsh, J.E., Rubio, R., and Berne, R.M., 1980, Changes in brain adenosine during bicuculline induced seizures in rats. Effects of hypoxia and altered systemic blood pressure, Circ. Res., 47: 568.PubMedCrossRefGoogle Scholar
  83. Zeman, W., and Innes, J.R.M., 1963, “Craigie’s Neuroanatomy of the Rat”, Academic Press, New York.Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • W. Kuschinksky
    • 1
  1. 1.Department of PhysiologyUniversity of MunichMünchen 2Germany

Personalised recommendations