Relationship Between Microflow, Local Tissue Po2 and Extracellular Activities of Potassium and Hydrogen Ions in the Cat Brain During Intraarterial Infusion of Ammonium Acetate

  • J. Gronczewski
  • E. Leniger-Follert
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)


In various pathophysiological states, i.e. hyperglycemia, hypoglycemia, hepatic coma, seizures and ischemia, the concentration of ammonia (NH3/NH4 +) is increased in both blood and tissue. One might suspect that ammonia could participate in the regulation of flow under these conditions. However, the reports in the literature about the effects of ammonia on flow are controversial. During infusion of ammonium salts in liver, a fall in regional blood flow was recorded by Barey et al. (1980), in brain, Schieve and Wilson (1953), and Gjedde et al. (1978) reported a decrease in cerebral blood flow, whereas Altenau and Kindt (1977) found an increase in cerebral blood flow.


Cerebral Blood Flow Ammonium Acetate Hepatic Coma Local Cerebral Blood Flow INTRAARTERIAL Infusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aickin, C., and Thomas, R.C., 1977, Microelectrode measurement of the intracellular pH and buffering power in mouse soleus muscle fibers, J. Physiol., 267: 791.Google Scholar
  2. Altenau, L.L., and Kindt, G.W., 1977, Cerebral vasomotor paralysis produced by ammonia intoxication, Acta Neurol. Scand., 56: 346.Google Scholar
  3. Barey, W., Siwecka, B., Gronczewski, J., and Skolasinska, K., 1980, The depressive action of ammonium chloride on the hepatic blood flow in sheep, Q. J. Exp. Physiol., 65: 99.Google Scholar
  4. Benjamin, A.M., Okamoto, K., and Quastel, J.H., 1978, Effects of ammonium ions on spontaneous action potentials and on contents of sodium potassium, ammonium and chloride ions in brain in vivo, J. Neurochem., 30: 131.PubMedCrossRefGoogle Scholar
  5. Benzi, G., Arrigoni, E., Strada, P., Pastoris, O., Villa, R.F., and Agnoli, A., 1977, Metabolism and cerebral energy state: Effect of acute hyperammonemia in beagle dog, Biochem. Pharmacol., 26: 2397.PubMedCrossRefGoogle Scholar
  6. Bessmann, S.P., and Pal, N., 1976, The Krebs cycle depletion theory of hepatic coma, in.: “The Urea Cycle”, S. Grisolia, R. Baguena, F. Mayor, eds., John Wiley and Sons, New York, pp. 83–89.Google Scholar
  7. Boron, W.F., and De Weer, P., 1976, Intracellular pH transients in squid giant axions caused by CO2, NH3 and metabolic inhibitors, J. Gen. Physiol., 67: 91.PubMedCrossRefGoogle Scholar
  8. Gjedde, A., Lockwood, A.H., Duffy, T.E., and Plum, F., 1978, Cerebral blood flow and metabolism in chronically hyperammonemic rats: Effect of an acute ammonia challenge, Ann. Neurol., 3: 325.PubMedCrossRefGoogle Scholar
  9. Hawkins, R.A., Miller, A.L., Nielson, R.C., and Veech, R.L., 1973, The acute action of ammonia in rat brain metabolism in vitro, Biochem. J., 34: 1001.Google Scholar
  10. Kessler, M., Höper, J., and Simon, W., 1974, Methodology and application of a multiple ions selective surface electrode (pH, pK, pNa, pCa, pCl) for tissue measurements, Fed. Proc., 33: 279.Google Scholar
  11. Kessler, M., and Lübbers, D.W., 1966, Aufbau und Anwendungsmöglichkeiten verschiedener Po2-Elektroden, Pflügers Arch. Ges. Physiol., 291: R32.Google Scholar
  12. Leniger-Follert, E., and Lübbers, D.W., 1976, Behavior of microflow and local Po2 of the brain cortex during and after direct electrical stimulation. A contribution to the problem of metabolic regulation of microcirculation in the brain, Pflügers Arch., 366: 39.PubMedCrossRefGoogle Scholar
  13. Lübbers, D.W., and Stosseck, K., 1970, Quantitative Bestimmung der lokalen Durchblutung durch elektrochemisch im Gewebe erzeugten Wasserstoff, Naturwissenschaften, 57: 311.PubMedCrossRefGoogle Scholar
  14. McKhan, G.M., and Tower, G., 1961, Ammonia toxicity and cerebral oxidative metabolism, Am. J. Physiol., 200(3): 420.Google Scholar
  15. Schieve, J.F., and Wilson, W.P., 1953, The changes in cerebral vascular resistance of man in experimental alkalosis and acidosis, J. Clin. Invest., 32: 33.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • J. Gronczewski
    • 1
  • E. Leniger-Follert
    • 1
  1. 1.Max-Planck-Institut für SystemphysiologieDortmund 1Germany

Personalised recommendations