Advertisement

The Effect of Glucose on the Oxygen Supply of the Blood-Free Perfused Guinea Pig Brain as Measured by Reflection Spectra and Po2 Histograms

  • U. Heinrich
  • B. Yu
  • J. Hoffmann
  • D. W. Lübbers
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 169)

Abstract

Earlier experiments with the guinea pig brain had shown that at a temperature of 37° with a substrate-free macrodex solution, equilibrated with 95% O2 and 5% CO2 and with a large flow cytochrome aa3 (cyt aa3) was only about 60% oxidized (Schwickardi, 1968; Heinrich et al., 1981). Under similar conditions the heart muscle behaves differently: In the blood-free perfused Langendorff heart the cyt aa3 is about 95% oxidized (Figulla et al., 1979). Since in this case the perfusion medium was different, the question arises, whether the difference in the composition of the perfusion medium (for example the addition of substrate) influences the oxygen supply and can — at least in part — be responsible for the observed difference in the redox state of the respiratory chain. To have a better insight in the oxygen supply, in the following experiments, we combined the measurements of the redox states of the cytochromes with the measurements of Po2 histograms on the brain surface. The redox state of cytochrome aa3 serves as an indicator of the intracellular mitochondrial O2 supply, whereas the Po2 histogram indicates the Po2 distribution in the extracellular space. The measurements were performed with two different perfusion media and at two different temperatures.

Keywords

Redox State Reflection Spectrum Oxygen Supply Brain Cortex Perfuse Brain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumgärtl, H., and Lübbers, D.W., 1983, Microcoaxial needle sensor for Polarographic measurement of local O2 pressure in the cellular range of living tissue. Its construction and properties, in; “Polarographic Oxygen Sensors”, E. Gnaigner, H. Porstner, eds., Springer, Berlin, Heidelberg, pp. 37–65.CrossRefGoogle Scholar
  2. Chance, B., Haselgrove, J., and Barlow, C., 1981, Redox gradients in oxygen delivery to tissue, in.: “Oxygen Transport to Tissue”, A.G.B. Kovách, E. Dora, M. Kessler, eds., Adv. Physiol. Sci., Vol. 25, Pergamon Press, Akadémiai Kiadó, Budapest, pp. 13–17.Google Scholar
  3. Chance, B., and Willians, G.R., 1956, The respiratory chain and oxidative phosphorylation, Adv. Enzym., 17: 65.Google Scholar
  4. Figulla, H.R., Wodick, R., and Hoffmann, J., 1979, The O2-saturation of myoglobin (MYO) and cytochrome aa3 (CYT) during high-flow hypoxia (HFH) and low-flow hypoxia (LFH) in the beating hemoglobin-free perfused Langendorff guinea-pig heart, Pflügers Arch., 379, R3Google Scholar
  5. Heinrich, U., Hoffmann, J., and Lübbers, D.W., 1981, Quantitative analysis of reflection spectra on the perfused brain in different states of oxygen supply, in.: “Oxygen Transport to Tissue IV”, D.F. Bruley, H.I. Bicher, eds., Plenum Press, New York, in print.Google Scholar
  6. Hoffmann, J., Wodick, R., Hannebauer, F., and Lübbers, D.W., 1982, Quantitative analysis of reflection spectra of the surface of the guinea pig brain, in.: “Oxygen Transport to Tissue V”, D.W. Lübbers, H. Acker, T.K. Goldstick, E. Leniger-Follert, eds., Plenum Press, New York, (this volume).Google Scholar
  7. Jöbsis, F.F., and Rosenthal, M., 1978, Behaviour of the mitochondria respiratory chain in vivo, Ciba Foundation Symposium 56: 149.PubMedGoogle Scholar
  8. Kessler, M., and Lübbers, D.W., 1966, Aufbau und Anwendungsmöglichkeiten verschiedener Po2-Elektroden, Pflügers Arch. ges. Physiol., 291: R82.Google Scholar
  9. Knaust, K., 1967, Sauerstoffversorgung des hämoglobinfrei perfundierten Meerschweinchengehirns bei Normo-und Hypothermie, Dissertation, Marburg.Google Scholar
  10. Kramer, K., 1934, Fortlaufende Registrierung der Sauerstoffsättigung im Blut an uneröffneten Blutgefäßen, Klin Wschr., 13: 379.CrossRefGoogle Scholar
  11. Lübbers, D.W., and Niesei, W., 1957, Ein Kurzzeit-Spektralanalysator zur Registrierung rasch verlaufender Änderungen der Absorption, Naturwissenschaften, 4: 59–60.CrossRefGoogle Scholar
  12. Millikan, G.A., 1942, The oximeter, an instrument for measuring continuously the oxygen saturation of arterial blood in man, Rev. Sci. Instrum., 13: 434.CrossRefGoogle Scholar
  13. Schwickardi, D., 1968, Konzentration und Kinetik der Atmungsfermente am isoliert perfundierten Meerschweinchengehirn in vivo und in Hypothermie von 18°C, Dissertation, Marburg.Google Scholar
  14. Starlinger, H., and Lübbers, D.W., 1973, Polarographic measurements of the oxygen pressure performed simultaneously with optical measurements of the redox state of the respiratory chain in suspensions of mitochondria under steady state conditions at low oxygen tensions, Pflügers Arch., 341: 15–22.PubMedCrossRefGoogle Scholar
  15. Yu, Bi., Baumgärtl, H., and Lübbers, D.W., 1982, An improved Polarographic multiwire surface Po2 electrode, particularly for measurement of high Po2 values, in.: “Oxygen Tansport to Tissue V”, D.W. Lübbers, H. Acker, T.K. Goldstick, E. Leniger-Follert, eds., Plenum Press, New York (this volume).Google Scholar

Copyright information

© Plenum Press, New York 1984

Authors and Affiliations

  • U. Heinrich
    • 1
  • B. Yu
    • 1
  • J. Hoffmann
    • 1
  • D. W. Lübbers
    • 1
  1. 1.Max-Planck-Institut für SystemphysiologieDortmund 1Germany

Personalised recommendations