Skip to main content

Biochemical Actions

  • Chapter
Interferon and Cancer

Abstract

Recent studies have shown that the human, mouse and bovine interferon (IFN) families consist of various gene products which may be both functionally and structurally heterogeneous. For example, the existence of multiple gene products of the IFN a family suggests that there may be specific roles for different molecular subtypes during stages of differentiation and development (Nagata et al., 1980). The capacity of interferon to exhibit such diverse activities is reflected by the multiplicity of biochemical responses detected in interferon-treated cells (Gordon and Minks, 1981; Borden and Ball, 1982; Lengyel, 1982). Most interferons share the same biochemical activities but quantitative differences are apparent among molecular subtypes as reflected by the differential activity on cells from different species. Although classically described as antiviral agents, the biochemical changes interferons elicit in cells are not selectively antiviral but sufficiently diverse to affect both viral and cellular metabolism. Nevertheless, the recent major advances in understanding the mechanism of action of interferon have come mainly from studies on the inhibition of viral replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguet, M. 1980, High-affinity binding of 125 I-labelled mouse interferon to a specific cell surface receptor, Nature, 284:459.

    Article  PubMed  CAS  Google Scholar 

  • Baglioni, C., Minks, M.A., and Maroney, P.A. 1978, Interferon action may be mediated by activation of a nuclease by pppA2′p5′A2′p5′A, Nature, 273:684.

    Article  PubMed  CAS  Google Scholar 

  • Ball, L.A. 1979, Induction of 2′5′-oligoadenylate synthetase activity and a new protein by chick interferon, Virology, 94:282.

    Article  PubMed  CAS  Google Scholar 

  • Ball, L.A. 1980, Induction, purification, and properties of 2′5′ oligoadenylate synthetase, Ann. N.Y. Acad. Sci., 350:486.

    Article  PubMed  CAS  Google Scholar 

  • Ball, L.A., and White, C.N. 1978, Oligonucleotide inhibitor of protein synthesis made in extracts of interferon-treated chick embryo cells: comparison with the mouse low molecular weight inhibitor, Proc. Natl. Acad. Sci. USA, 75:1167.

    Article  PubMed  CAS  Google Scholar 

  • Ball, L.A., and White, C.N. 1979, Induction, purification, and properties of 2′5′-oligoadenylate synthetase, in: “Regulation of Macromolecular Synthesis”, G. Koch and D. Richter, eds., Academic Press, New York, pp. 303–317.

    Google Scholar 

  • Beck, G., Poindron, P., Illinger, D., Beck, J.P., Ebel, J.P., and Falcoff, R. 1974, Inhibition of steroid inducible tyrosine aminotransferase by mouse and rat interferon in hepatoma tissue culture cells, FEBS Lett., 48:297.

    Article  PubMed  CAS  Google Scholar 

  • Borden, E.C., and Ball, L.A. 1982, Interferons: biochemical cell growth inhibitory, and immunological effects, Prog. Hematol., 12:299.

    Google Scholar 

  • Branca, A.A., and Baglioni, C. 1981, Evidence that types I and II interferons have different receptors, Nature, 294:768.

    Article  PubMed  CAS  Google Scholar 

  • Branca, A.A., and Baglioni, C. 1982, Human interferon: binding to and degradation by a human cell line, J. Cell. Biochem. (suppl.), 6:95.

    Google Scholar 

  • Cayley, P.J., Knight, M., and Kerr, I.M. 1982, Virus-mediated inhibition of the ppp(A2’p) A system and its prevention by interferon, Biochem. Biophys. Res. Commun., 104:376.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, M.J., Pain, V.M., Wong, S.T., and Henshaw, E.C. 1982, Phosphorylation inhibits guanine nucleotide exhange on eukaryotic initiation factor 2, Nature, 296:93.

    Article  PubMed  CAS  Google Scholar 

  • Clemens, M.J., and Williams, B.R.G. 1978, Inhibition of cell-free protein synthesis by pppA2′ p5′ A 2′ p5′ A: a novel oligonucleotide synthesized by interferon-treated L cell extracts, Cell, 13:565.

    Article  PubMed  CAS  Google Scholar 

  • Doetsch, P., Wu, J.M., Sawada, Y., and Suhadolnik, R.J. 1981, Synthesis and characterization of (2′-5′)ppp3′dA(p3′dA)n, an analogue of (2′-5′)pppA8pA), Nature, 291:355.

    Article  PubMed  CAS  Google Scholar 

  • Dougherty, J.P., Samantha, H., Farrell, P.J., and Lengyel, P. 1980, Interferon, double-stranded RNA, and RNA degradation: isolation of homogeneous pppA(2′p5′A)n-1. synthetase from Ehrlich ascites tumor cells, J. Biol. Chem. 255:3813.

    PubMed  CAS  Google Scholar 

  • Epstein, D.A., Czarniechki, C.W., Jacobsen, H., Friedman, R.M., and Panet, A. 1981, A mouse cell line, which is unprotected by interferon against lytic virus infection, lacks ribonuclease F activity, Eur. J. Biochem., 118:9.

    Article  PubMed  CAS  Google Scholar 

  • Epstein, D.A., Torrence, P.F., and Friedman, R.M. 1980, Double-stranded RNA inhibits a phosphoprotein phosphatase present in interferon-treated cells, Proc. Natl. Acad. Sci. USA, 77:107.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, P.J., Balkow, K., Hunt, T., Jackson, R.J., and Trachsel, H. 1977, Phosphorylation of initiation factor eIF-2 and the control of reticulocyte protein synthesis, Cell, 11:187.

    Article  PubMed  CAS  Google Scholar 

  • Fellous, M., Nir, U., Wallach, D., Merlin, G., Rubinstein, M., and Revel, M. 1982, Interferon-dependent induction of mRNA for the major histocompatibility antigens in human fibroblasts and lymphoblastoid cells, Proc. Natl. Acad. Sci. USA, 79:3082.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, F.A., and Stringfellow, D.A. 1980, Virus and interferon effects on cellular prostaglandin biosynthesis, J. Immunol., 125:431.

    PubMed  CAS  Google Scholar 

  • Fuse, A., and Kuwata, T. 1978, Inhibition of DNA synthesis and alteration of cyclic adenosine 3′, 5′-monophosphate levels in RSa cells by human leukocyte interferon, J. Natl. Cancer Inst., 60:1227.

    PubMed  CAS  Google Scholar 

  • Gewart, D.R., Shah, S., and Clemens, M.J. 1981, Inhibition of cell division by interferons: changes in the transport and intracellular metabolism of thymidine in human lymphoblastoid (Daudi) cells. Eur. J. Biochem., 116:487.

    Article  Google Scholar 

  • Golgher, R.R., Williams, B.R.G., Gilbert, C.S., Brown, R.E., and Kerr, I.M. 1980, Protein kinase activity and the natural occurrence of 2–5A in interferon-treated EMC virus-infected L-cells, Ann. N.Y. Acad. Sei., 350:448.

    Article  CAS  Google Scholar 

  • Gordon, J., and Minks, M.A. 1981, The interferon-renaissance: molecular aspects of induction and action, Microbiol. Rev., 45:244.

    PubMed  CAS  Google Scholar 

  • Gupta, S.L. 1979, Specific protein phosphorylation in interferon-treated uninfected and virus-infected mouse L929 cells: enhancements by double-stranded RNA, J. Virol., 29:301.

    PubMed  CAS  Google Scholar 

  • Gupta, S.L., Rubin, B.Y., and Holmes, S.L. 1981, Regulation of interferon action in human fibroblasts: transient induction of specific proteins and amplification of the antiviral response by actinomycin D, Virology, 111:331.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, S.L., and Gupta, S.L. 1982, Interferon action in human fibroblasts: induction of 2′5′-oligoadenylate synthetase in the absence of detectable protein kinase activity, Arch. Virol., 72:137.

    Article  PubMed  CAS  Google Scholar 

  • Hovanessian, A.G., Brown, R.E., and Kerr, I.M. 1977, Synthesis of a low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells, Nature, 268–537.

    Google Scholar 

  • Hovanessian, A.G., Menes, E., and Montagnier, L. 1981, Lack of systematic correlation between the interferon mediated antiviral state and the levels of 2-5A synthetase and protein kinase in three different types of murine cells, J. Interferon Res., 1:179.

    Article  PubMed  CAS  Google Scholar 

  • Hovanessian, A.G., and Riviere, Y. 1980, Interferon-mediated induction of 2-5A synthetase and protein kinase in the liver and spleen of mice infected with Newcastle disease virus or injected with poly(I) poly(C), Ann. Virol., 131E:501.

    Google Scholar 

  • Hovanessian, A.G., Riviere, Y., Montagnier, L., Michelson, M., Lacour, J., and Lacour, F. 1982, Enhancement of interferon-mediated protein kinase in mouse and human plasma in response to treatment with polyadenylic-polyuridylic acid (Poly A:Poly U), J. Interferon Res., 2:209.

    Article  PubMed  CAS  Google Scholar 

  • Hovanessian, A.G., Wood, J., Meurs, E., and Montagnier, L. 1979, Increased nuclease activity in cells treated with pppA2′p5′A2′p5′A, Proc. Natl. Acad. Sci. USA, 76:3261.

    Article  PubMed  CAS  Google Scholar 

  • Illinger, D., Coupin, G., Richards, M., and Poindron, P. 1976, Rat interferon inhibits steroid-inducible glycerol 3-phosphate dehydrogenase synthesis in a rat glial cell line, FEBS Lett., 64:391.

    Article  PubMed  CAS  Google Scholar 

  • Justesen, J., Ferbus, D., and Thang, M.N. 1980a, Elongation mechanism and substrate specificity of 2′, 5′-oligoadenylate synthetase, Proc. Natl. Acad. Sci. USA., 77:4618.

    Article  PubMed  CAS  Google Scholar 

  • Justesen, J., Ferbus, D., and Thang, M.N. 1980b, 2′5′ oligoadenylate synthetase, an interferon induced enzyme: direct assay methods for the products, 2′5′ oligoadenylates and 2′5′ co-oligonucleotides, Nucleic Acids Res., 8:3073.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, I.M., and Brown, R.E., 1978, pppA2′p5′A2′p5A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells, Proc. Natl. Acad. Sci. USA, 75:256.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, I.M., Brown, R.E., and Ball, L.A. 1974, Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment, Nature, 250:57.

    Article  PubMed  CAS  Google Scholar 

  • Kimchi, A., Shulman, L., Schmidt, A., Chernajovsky, Y., Fradin, A., and Revel, M. 1979, Kinetics of the induction of three translation-regulatory enzymes by interferon, Proc. Natl. Acad. Sci. USA, 76:3208.

    Article  PubMed  CAS  Google Scholar 

  • Kimchi, A., Shure, H., and Revel, M. 1981, Anti-mitogenic function of interferon-induced (2′-5′) oligo(adenylate) and growth-related variations in enzymes that synthesize and degrade this oligonucleotide, Eur. J. Biochem., 114:5.

    Article  PubMed  CAS  Google Scholar 

  • Knight, M., Cayley, P.J., Silverman, R.H., Wreschner, D.H., Gilbert, C.S., Brown, R.E., and Kerr, I.M. 1980, Radioimmune, radiobinding and HPLC analysis of 2-5A and related oligonucleotides from intact cells, Nature, 288:189.

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurti, C., Besancon, F., Justesen, J., Poulsen, K., and Ankel, H. 1982, Inhibition of mouse fibroblast interferon by gangliosides. Differential effects on biological activity and on induction of (2′-5′) oligoadenylate synthetase, Eur. J. Biochem., 124:1.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, I., and Baglioni, C. 1980a, Increased levels of (2′-5′) oligo(A) polymerase activity in human lymphoblastoid cells treated with glucocorticoids, Proc. Natl. Acad. Sci. USA, 77:6506.

    Article  PubMed  CAS  Google Scholar 

  • Krishnan, I., and Baglioni, C. 1980b, 2′5′ oligo(A) polymerase activity in serum of mice infected with EMC virus or treated with interferon, Nature, 285:485.

    Article  PubMed  CAS  Google Scholar 

  • Lebleu, B., Sen, G.C., Shaila, S., Cabrer, B., and Lengyel, P. 1976, Interferon, double-stranded RNA, and protein phosphorylation, Proc. Natl. Acad. Sci. USA, 73:3107.

    Article  PubMed  CAS  Google Scholar 

  • Lengyel, P. 1982, Biochemistry of interferons and their actions, Annu. Rev. Biochem., 51:251.

    Article  PubMed  CAS  Google Scholar 

  • Lengyel, P., Samanta, H., Dougherty, J.P., Brawner, M.E., and Schmidt, H. 1982, Interferons and gene activation: cloning of cDNA segments complementary to messenger RNA’s induced by interferons, J. Cell Biochem. (suppl.), 6:81.

    Google Scholar 

  • Levin, D.H., Petryshyn, R., and London, I.M. 1980, Characterization of double-stranded-RNA-activated kinase that phosphorylates a subunit of eukaryotic initiation factor 2(eIF-2α) in reticulocyte lysates, Proc. Natl. Acad. Sci. U.S.A., 77:832.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, J.A., Falcoff, E., and Falcoff, R. 1978, Dual action of double-stranded RNA in inhibiting protein synthesis in extracts of interferon-treated mouse L cells: translation is impaired at the level of initiation and by mRNA degradation, Eur. J. Biochem., 86:497.

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari, R.K., Banerjee, D.K., Waechter, C.J., Olden, K., and Friedman, R.M. 1980, Interferon treatment inhibits glycosylation of a viral protein, Nature, 287:454.

    Article  PubMed  CAS  Google Scholar 

  • Mannering, G.J., Renton, K.W., el Azhary, R., and Deloria, L.B. 1980, Effects of interferon-inducing agents on hepatic cytochrome P-450 drug metabolizing systems, Ann. N.Y. Acad. Sei., 350:314.

    Article  CAS  Google Scholar 

  • Martin, E.M., Birdsall, N.J.M., Brown, R.E., and Kerr, I.M. 1979, Enzymic synthesis, characterisation and nuclear-magnetic-resonance spectra of pppA2′p5′A2′p5′A and related oligonucleotides: comparison with chemically synthesised material, Eur. J. Biochem., 95:295.

    Article  PubMed  CAS  Google Scholar 

  • Matsuno, T., Shirasawa, N., and Kohno, S. 1976, Interferon suppresses glutamine synthetase induction in chick embryonic neural retina, Biochem. Biophys. Res. Commun., 70:310.

    Article  PubMed  CAS  Google Scholar 

  • Meurs, E., Hovanessian, A.G., and Montagnier, L. 1981, Interferon mediated antiviral state in human MRCS cells in the absence of detectable levels of 2–5A synthetase and protein kinase, J. Interferon Res., 1:219.

    Article  PubMed  CAS  Google Scholar 

  • Merritt, J.A., Borden, E.C., and Ball, L.A. 1982, Measurement of 2′5′ oligoadenylate synthetase in human mononuclear cells, J. Cell Biochem. (suppl.), 6:97.

    Google Scholar 

  • Minks, M.A., Benvin, S., and Baglioni, C. 1980, Mechanism of pppA(2′p5′A)n 2′p5′AOH synthesis in extracts of interferon-treated HeLa cells, J. Biol. Chem., 255:5031.

    PubMed  CAS  Google Scholar 

  • Minks, M.A., West, D.K., Benvin, S., and Baglioni, C. 1979, Structural requirements of double-stranded RNA for the activation of 2′, 5′-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells, J. Biol. Chem., 254:10180.

    PubMed  CAS  Google Scholar 

  • Nagata, S., Mantei, N., and Weissmann, C. 1980, The structure of one of the eight or more distinct chromosomal genes for human interferon-α, Nature, 287:401.

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D.W., and Friedman, R.M. 1973, Stimulation of aryl hydrocarbon hydroxylase induction in cell cultures by interferon, J. Virol., 11:193.

    PubMed  CAS  Google Scholar 

  • Nilsen, T.W., and Baglioni, C. 1979, Mechanism for discrimination between viral and host mRNA in interferon-treated cells, Proc. Natl. Acad. Sci. U.S.A., 76:2600.

    Article  PubMed  CAS  Google Scholar 

  • Nilsen, T.W., Maroney, P.A., and Baglioni, C. 1981, Double-stranded RNA causes synthesis of 2′, 5′-oligo(A) and degradation of messenger RNA in interferon-treated cells, J. Biol. Chem., 256:7806.

    PubMed  CAS  Google Scholar 

  • Nilsen, T.W., Maroney, P.A., Robertson, H.D., and Baglioni, C. 1982, Heterogeneous nuclear RNA promotes synthesis of (2′, 5′) oliogadenylate and is cleaved by the (2′, 5′) oligoadenylate-activated endoribonuclease, Mol. Cell Biol., 2:154.

    PubMed  CAS  Google Scholar 

  • Nilsen, T.W., Wood, D.L., and Baglioni, C. 1980, Virus-specific effects of interferon in emnryonal carcinoma cells, Nature, 286:178.

    Article  PubMed  CAS  Google Scholar 

  • Orchansky, P., Rubinstein, M., and Sela, I. 1982, Human interferons protect plants from virus infection, Proc. Natl. Acad. Sci. U.S.A., 79:2278.

    Article  PubMed  CAS  Google Scholar 

  • Panet, A., Czarniecki, C.W., Falk, H., and Friedman, R.M. 1981, Effect of 2′5′-oligoadenylic acid on a mouse cell line partially resistant to interferon, Virology, 114:567.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, W.K., Hovanessian, A., Brown, R.E., Clemens, M.J., and Kerr, I.M. 1976, Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis, Nature, 264–477.

    Google Scholar 

  • Rochette-Egly, C., and Tovey, M.G. 1982, Interferon enhances guanylate cyclase activity in human lymphoma cells, Biochem. Biophys. Res. Commun., 107:150.

    Article  PubMed  CAS  Google Scholar 

  • Samanta, H., Dougherty, J.P., and Lnegyel, P. 1980, Synthesis of (2′-5′)(A)n. from ATP: characteristics of the reaction catalyzed by (2′-5′)(A)n. synthetase purified from mouse Ehrlich ascites tumor cells treated with interferon, J. Biol. Chem., 255:9807.

    PubMed  CAS  Google Scholar 

  • Samuel, C.E. 1979, Mechanism of interferon action: phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase, Proc. Natl. Acad. Sci. U.S.A.., 76:600.

    Article  PubMed  CAS  Google Scholar 

  • Schattner, A., Merlin, G., Wallach, D., Rosenberg, H., Bino, T., Hahn, T., Levin, S., and Revel, M. 1981, Monitoring of interferon therapy by assay of (2′-5′) oligo-isoadenylate synthetase in human peripheral white blood cells, J. Interferon Res., 1:587.

    Article  PubMed  CAS  Google Scholar 

  • Schneck, J., Rager-Zisman, B., Rosen, O.M., and Bloom, B.R. 1982. Genetic analysis of the role of cAMP in mediating effects of interferon, Proc. Natl. Acad. Sci. U.S.A.., 79:1879.

    Google Scholar 

  • Sekar, V., Atmar, V.J., Krim, M., and Kuehn, G.D. 1982, Interferon induction of polyamine-dependent protein kinase activity in Ehrlich ascites tumor cells, Biochem. Biophys. Res. Commun., 106:305.

    Article  PubMed  CAS  Google Scholar 

  • Sen, G.C., Gupta, S.L., Brown, G.E., Lebleu, B., Rebello, M.A., and Lengyel, P. 1976, Interferon treatment of Ehrlich ascites tumor cells: effects on exogenous mRNA translation and tRNA inactivation in the cell extract, J. Virol., 17:191.

    CAS  Google Scholar 

  • Sen, G.C., Shaila, S,, Lebleu, B., Brown, G.E., Desrosiers, R.C., and Lengyel, P. 1977, Impairment of reovirus mRNA methylation in extracts of interferon-treated Ehrlich ascites tumor cells: further characteristics of the phenomenon, J. Virol., 21:69.

    PubMed  CAS  Google Scholar 

  • Sen, G.C., Taira, H., and Lengyel, P. 1978, Interferon, double-stranded RNA, and protein phosphorylation: characteristics of a double-stranded RNA-activated protein kinase system partially purified from interferon-treated Ehrlich ascites tumor cells, J. Biol. Chem., 253:5915.

    PubMed  CAS  Google Scholar 

  • Shulman, L., and Revel, M. 1980, Interferon-dependent induction of mRNA activity for (2′5′)oligo-isoadenylate synthetase, Nature, 288:98.

    Article  PubMed  CAS  Google Scholar 

  • Siegal, G.P., Thorgeirsson, U.P., Russo, R.G., Wallace, D.M., Liotta, L.A., and Berger, S.L. 1982, Interferon enhancement of the invasive capacity of Ewing sarcoma cells in vitro, Proc. Natl. Acad. Sci. U.S.A., 79:4064.

    CAS  Google Scholar 

  • Siekierka, J., Mauser, L., and Ochoa, S. 1982, Mechanism of polypeptide chain initiation in eukaryotes and its control by phosphorylation of the a subunit of initiation factor 2, Proc. Natl. Acad. Sci. U.S.A., 79:2537.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, R.H., Cayley, P.J., Knight, M., Gilbert, C.S., and Kerr, I.M. 1982, Control of the ppp(A2fp)nA system in HeLa cells. Effects of interferon and virus infection, Eur. J. Biochem., 124:131.

    Article  PubMed  CAS  Google Scholar 

  • Silverman, R.H., Wreschner, D.H., Gilbert, C.S., and Kerr, I.M. 1981, Synthesis, characterization and properties of ppp(A2fp) ApCp and related high-specific-activity P-labelled derivatives of ppp(A2fp) A, Eur. J. Biochem., 115:79.

    Article  PubMed  CAS  Google Scholar 

  • Singh, G., Renton, K.W., and Stebbing, N. 1982, Homogeneous interferon from E. coli depresses hepatic cytochrome P-450 and drug biotransformation, Biochem. Biophys. Res. Commun., 106:1256.

    Article  PubMed  CAS  Google Scholar 

  • Slattery, E., Ghosh, N., Samanta, H., and Lengyel, P. 1979, Interferon, double-stranded RNA, and RNA degradation: activation of an endonuclease by (2′-5′)An, Proc. Natl. Acad. Sci. U.S.A., 76:4778.

    Article  PubMed  CAS  Google Scholar 

  • Sokawa, Y., Ando, T., and Ishihara, Y. 1980, Induction of 2′, 5′-oligoadenylate synthetase and interferon in mouse trigeminal ganglia infected with herpes simplex virus, Infect. Immunol., 28:719.

    CAS  Google Scholar 

  • Sreevalsan, T., Rozengurt, E., Taylor-Papadimitriou, J., and Burchell, J. 1980, Differential effect of interferon on DNA synthesis: 2-deoxyglucose uptake and ornithine decarboxylase activity in 3T3 cells stimulated by polypeptide growth factors and tumor promoters, J. Cell Physiol., 104:1.

    Article  PubMed  CAS  Google Scholar 

  • Stark, F.R., Dower, W.J., Schimke, R.T., Brown, R.E., and Kerr, I.M. 1979, 2–5A synthetase: assay, distribution and variation with growth or hormone status, Nature, 278–471.

    Google Scholar 

  • Stewart, W.E., II, De Clercq, E., Billiau, A., Desmyter, J., and De Somer, P. 1972, Increased susceptibility of cells treated with interferon to the toxicity of polyriboinosinic acid. polyribocytidylic acid, Proc. Natl. Acad. Sci. U.S.A., 69:1851.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B.R.G., Golgher, R.R., Brown, R.E., Gilbert, C.S., and Kerr, I.M. 1979, Natural occurrence of 2–5A in interferon-treated EMC virus-infected L cells, Nature, 282:582.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B.R.G., Golgher, R.R., Hovanessian, A.G., and Kerr, I.M. 1980, The involvement of the 2–5A(pppA2′p5′A2′p5′A) system and protein kinases in the antiviral and anticellular effects of interferon, in: “Developments in Antiviral Therapy”, L.H. Collier and J. Oxford, eds., Academic Press, London, pp. 173–187.

    Google Scholar 

  • Williams, B.R.G., and Kerr, I.M. 1978, Inhibition of protein

    Google Scholar 

  • Williams, B.R.G., Kerr, I.M., Gilbert, C.S., White, C.N., and Ball, L.A. 1978, Synthesis and breakdown of pppA2′p5′A2′p5′A and transient inhibition of protien synthesis in extracts from interferon-treated and control cells, Eur. J. Biochem., 92:455.

    Article  PubMed  CAS  Google Scholar 

  • Williams, B.R.G., and Read, S.E. 1981, Detection of elevated levels of interferon-induced 2-5A synthetase in infectious diseases and on parturition, in: “Proceedings of the Biology of the Interferon System”, E. De Maeyer, G. Galasso, and H. Schellekens, eds., Elsevier, New York, pp. 111–114.

    Google Scholar 

  • Williams, B.R.G., Read, S.E., Freedman, M.H., Carver, D.H., and Gelfand, E.W. 1982, The assay of 2-5A synthetase as an indicator of interferonactivity and virus infection in vivo, in: “Chemistry and Biology of Interferons. Relationship to Therapeutics”, UCLA Symposia on Molecular and Cellular Biology XXV, T.C. Merigan, and R.M. Friedman, eds., Academic Press, New York.

    Google Scholar 

  • Wood, J.N., and Hovanessian, A.G. 1979, Interferon enhances 2-5A synthetase in embryonal carcinoma cells, Nature, 282, 74.

    Article  PubMed  CAS  Google Scholar 

  • Wreschner, D.H., McCauley, J.W., Skehel, J.J., and Kerr, I.M. 1981, Interferon action—sequence specificity of the ppp(A2′p)n-dependent ribonuclease, Nature, 289:414.

    Article  PubMed  CAS  Google Scholar 

  • Wreschner, D.H., Silverman, R.H., James, T.C., Gilbert, CS., and Kerr, I.M. 1982, Affinity labelling and characterisation of the ppp(A2′p)nA-dependent endoribonuclease from different mammalian sources, Eur. J. Biochem., in press.

    Google Scholar 

  • Yaron, M., Yaron, I., Gurari-Rotman, D., Revel, M., Lindner, H.R., and Zor, U. 1977, Stimulation of prostaglandin E production in culture human fibroblasts by poly(I) poly(C) and human interferon, Nature, 267:457.

    Article  PubMed  CAS  Google Scholar 

  • Zilberstein, A., Kimchi, A., Schmidt, A., and Revel, M. 1978, Isolation of two interferon-induced translational inhibitors: a protein kinase and an oligo-isoadenylate synthetase, Proc. Natl. Acad. Sci. USA, 75:4734.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Williams, B.R.G. (1983). Biochemical Actions. In: Sikora, K. (eds) Interferon and Cancer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1170-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1170-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1172-0

  • Online ISBN: 978-1-4684-1170-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics