Skip to main content

Regulation of Nitrogen Metabolism During Early Seedling Growth

  • Chapter
Mobilization of Reserves in Germination

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 17))

Abstract

During grain development the basic storage reserves, (carbohydrates, lipids, and proteins) are laid down in all parts of the grain or seed. After germination hydrolysis of these reserves is seen first in the seedling, subsequently in the cotyledon or scutellum and finally, in the endosperm.1,2 The carbohydrate, whether stored initially or derived from lipids,3 is available as a substrate to supply the energy and reducing power as well as the building blocks required for the formation of new cells (Fig. 1). One place where metabolism involved in the reworking of carbon is potentially regulated is in the reutilization of the amino acids supplied by the hydrolysis of storage proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jacobsen JV, TJV Higgins, JA Zwar 1979 Hormonalcontrol of endosperm function during germination. In RL Phillips, CE Green, BG Gengenbach, eds, The Plant Seed: Development, Preservation and Germination, Academic, New York pp 241–262

    Google Scholar 

  2. Toole EH 1924 The transformation and course of development of germinating maize. Am J Bot 11: 325–350

    Article  CAS  Google Scholar 

  3. Oaks A, H Beevers 1964 The glyoxylate cycle in maize scutellum. Plant Physiol 39: 431–434

    Article  PubMed  CAS  Google Scholar 

  4. Folkes BF, EW Yemm 1958 The respiration of barley plants. X. Respiration and the metabolism of amino-acids and proteins in germinating grain. New Phytol 57: 106–131

    Article  CAS  Google Scholar 

  5. Joy KW, BF Folkes 1965 The uptake of amino acids and their incorporation into the proteins of excised barley embryos. J Expt Bot 16: 646–666

    Article  CAS  Google Scholar 

  6. Oaks A 1963 The control of amino acid biosynthesis in maize roots tips. Biochim Biophys Acta 76: 638–641

    Article  PubMed  CAS  Google Scholar 

  7. Oaks A 1965 The effect of leucine on the biosynthesis of leucine in maize root tips. Plant Physiol 40: 149–155

    Article  PubMed  CAS  Google Scholar 

  8. Sodek L, CM Wilson 1970 Incorporation of leucine-14C and lysine-14C into protein in the developing endosperm of normal and opaque-2 corn. Arch Biochem Biophys 140: 29–38

    Article  PubMed  CAS  Google Scholar 

  9. Sodek L, CM Wilson 1973 Metabolism of lysine and leucine derived from storage protein during the germination of maize. Biochim Biophys Acta 204: 353–362

    Article  Google Scholar 

  10. Oaks A, H Beevers 1964 The requirement for organic nitrogen in Zea mays embroys. Plant Physiol 39: 37–43

    Article  PubMed  CAS  Google Scholar 

  11. Sheridan WF, MG Neuffer 1981 Maize mutants altered in embryo development. Symp Soc Dev Biol 39: 137–156

    Google Scholar 

  12. Cameron-Mills V, CM Duffus 1980 The influence of nutrition on embryo development and germination. Cereal Res Commun 8: 143–149

    CAS  Google Scholar 

  13. Aslam M, A Oaks 1976 The effect of glucose on nitrate reductase in corn roots. Plant Physiol 56: 634–639

    Article  Google Scholar 

  14. Sahulka J, L Lisa 1978 The influence of sugars on nitrate reductase induction by exogenous nitrate or nitrite in excised Pisum sativum roots. Biol Plant 20: 359–367

    Article  CAS  Google Scholar 

  15. Eänisch Ten Gate CH, H Breteler 1981 Role of sugars in nitrate utilization by roots of dwarf bean. Physiol Plant 52: 129–135

    Article  Google Scholar 

  16. Barnard RA, A Oaks 1970 Metabolism of proline in maize root tips. Can J Bot 48: 117–124

    Article  Google Scholar 

  17. Oaks A, I Stulen, KE Jones, MJ Winspear, S Misra, I Boesel 1980 Enzymes of nitrogen assimilation in maize roots. Planta 148: 477–484

    CAS  Google Scholar 

  18. Wall JS, JW Aulis 1978 Corn and sorghum grain protein. Adv Cereal Sci Technol 2: 135–219

    CAS  Google Scholar 

  19. Harvey BMR, A Oaks 1974 The hydrolysis of endosperm proteins in Zea mays. Plant Physiol 53: 453–457

    Article  PubMed  CAS  Google Scholar 

  20. Oaks A 1975 The regulation of nitrogen loss from maize endosperm. Can J Bot 43: 1077–1082

    Article  Google Scholar 

  21. Feller UT, T Soong, RH Hageman 1978 Patterns of proteo-lytic activities in different tissues of corn. Planta 140: 155–162

    Article  CAS  Google Scholar 

  22. Winspear MJ 1981 Peptide hydrolases in maize endosperm. MSc Thesis, McMaster University, pp 1–113

    Google Scholar 

  23. Mikola J 1982 Proteinases, peptidases, and inhibitors of endogenous proteinases in germinating seeds. In JG Vaughan, J Dussant, J Mosse, eds, Seed Proteins, Academic, London, New York, in press

    Google Scholar 

  24. Harvey BMR, A Oaks 1974 Characteristics of an acid protease from maize endosperm. Plant Physiol 53: 449–452

    Article  PubMed  CAS  Google Scholar 

  25. Abe M, S Arai, M Fujimari 1977 Purification and characterization of a protease occurring in the endo-sperm of germinating corn. Agric Biol Chem 41: 893–899

    Article  CAS  Google Scholar 

  26. Oaks A, MJ Winspear, S Misra 1982 Hydrolysis of endo-sperm protein in Zea mays (W64A × W182E). In J Kruger, D LaBerge, eds, Third International Symposium on Pre-harvest Sprouting, Westview Press, Boulder, CO, in press

    Google Scholar 

  27. Harvey BMR, A Oaks 1974 The role of gibberellic acid in the hydrolysis of endosperm reserves in Zea mays. Planta 121: 67–74

    Article  CAS  Google Scholar 

  28. Mac Gregor AW 1982 Cereal α-amylases: synthesis and action pattern. In JA Vaughan, J Dussant, J Mosse, eds, Seed Proteins, Academic, London, New York, in press

    Google Scholar 

  29. Varner JF, Dth HO 1976 The role of hormones in the integration of seedling growth. In J. Papaconstantinow, ed, The Molecular Biology of Hormone Action, Academic, New York pp 173–194

    Google Scholar 

  30. Sawhney R, JM Naylor 1979 Dormancy studies in seed of Avena fatua. 9. A demonstration of genetic variability affecting the response to temperature during seed development. Can J Bot 57: 59–63

    Article  Google Scholar 

  31. Kara I, K Wada, H Matsubara 1976 Pumpkin (Cucurbita sp) seed globulin. II. Alterations during germination. Plant Cell Physiol 17: 815–823

    Google Scholar 

  32. Hara I, H Matsubara 1980 Pumpkin (Cucurbita sp) seed globulin. V. Proteolytic activities involved in globulin degradation in ungerminated seeds. Plant Cell Physiol 21: 219–232

    CAS  Google Scholar 

  33. Baumgarten B, MJ Chrispeels 1977 Purification and characterization of vicilin peptidohydrolase, the major endopeptidase in the cotyledons of mung-bean seedlings. Eur J Biochem 77: 223–233

    Article  Google Scholar 

  34. Yemm EW, EC Cocking 1951 The determination of amino acids with ninhydrin. Analyst 80: 209–213

    Article  Google Scholar 

  35. Steward CR, SF Boggess, D Aspinall, LG Paleg 1977 Inhibition of proline oxidation by water stress. Plant Physiol 59: 930–932

    Article  Google Scholar 

  36. Higgins CF, JW Payne 1977 Peptide transport by germinating barley embryos. Planta 134: 205–206

    Article  CAS  Google Scholar 

  37. Saponen T 1979 Development of peptide transport activity in barley scutellum during germination. Plant Physiol 64: 570–574

    Article  Google Scholar 

  38. Oaks A, DJ Mitchell, RA Barnard, FJ Johnson 1970 Regulation of proline biosynthesis in maize roots. Can J Bot 48: 2249–2258

    Article  CAS  Google Scholar 

  39. Oaks A, RGS Bidwell 1970 Compartmentation of intermediary metabolites. Annu Rev Plant Physiol 21: 43–66

    Article  CAS  Google Scholar 

  40. Bryan JK 1976 Amino acid biosynthesis and its regulation. In J Bonner and JE Varner, eds. Plant Biochemistry, Academic, New York pp 525–597

    Google Scholar 

  41. Miflin BJ, PJ Lea 1979 Amino acid metabolism. Annu Rev Plant Physiol 28: 299–329

    Article  Google Scholar 

  42. Bryan JK 1980 Synthesis of the aspartate family and branched chain amino acids. In BJ Miflin, ed, The Biochemistry of Plants, Vol 5, Amino acids and derivatives, Academic, New York pp 403–452

    Google Scholar 

  43. Carlson PS 1970 Induction and isolation of auxotrophic mutants in somatic cell cultures of Nicotiana tabacum. Science 168: 487–489

    Article  PubMed  CAS  Google Scholar 

  44. King J, RB Horsch, AD Savage 1980 Partial characterization of two stable auxotrophic cell strains of Datura innoxia Mill. Planta 149: 480–484

    Article  CAS  Google Scholar 

  45. Gilchrist GT, TS Woodin, ML Johnson, T Kosuge 1972 Regulation of aromatic amino acid biosynthesis in higher plants. I. Evidence for a regulatory form of chorismate mutase in etiolated mung bean seedlings. Plant Physiol 49: 52–57

    Article  PubMed  CAS  Google Scholar 

  46. Carlson JE, JM Widholm 1978 Separation of two forms of anthranilate synthetase from 5-methyltryptophan-susceptible and-resistant cultures of Solanum tuber-osum cells. Physiol Plant 44: 251–255

    Article  CAS  Google Scholar 

  47. Sakano K 1979 Derepression and repression of lysine-sensitive aspartokinase during in vitro culture of carrot root tissue. Plant Physiol 63: 583–585

    Article  PubMed  CAS  Google Scholar 

  48. Bright SWJ, BJ Miflin, SE Rognes 1982 Threonine accumulation in the seeds of barley mutants. Biochem Genet 20: 229–243

    Article  PubMed  CAS  Google Scholar 

  49. Oaks A 1975 Changing patterns of metabolism as root cells mature. Biochem Physiol Pflanz 168: 371–374

    CAS  Google Scholar 

  50. DI Camelli CA, JK Bryan 1980 Comparison of sensitive and desensitized forms of maize homoserine dehydrogen-ase. Plant Physiol 65: 176–183

    Article  Google Scholar 

  51. Heimer YM, P Filner 1970 Regulation of nitrate assimilation pathway of cultured cells. II. Properties of a variant line. Biochim Biophys Acta 215: 152–165

    Article  PubMed  CAS  Google Scholar 

  52. Widholm JM 1976 Selection and characterization of cultured carrot and tobacco cells resistant to lysine, methionine and proline analogues. Can J Bot 54: 1523–1529

    Article  CAS  Google Scholar 

  53. Hibbert KA, CE Green 1982 Inheritance and expression of lysine plus threonine resistance selected in maize tissue culture. Proc Natl Acad Sci USA 79: 559–563

    Article  Google Scholar 

  54. Bourgin JP 1978 Valine-resistant plants from in vitro selected tobacco cells. Mol Gen Genet 161: 225–230

    Article  CAS  Google Scholar 

  55. Beevers L, RH Hageman 1980 Nitrate and nitrite reduction. In. BJ Miflin, ed, The Biochemistry of Plants, Vol 5, Amino Acids and Derivatives, Academic, New York, pp 115–168

    Google Scholar 

  56. Filner P 1966 Regulation of nitrate reductase in cultured tobacco cells. Biochim Biophys Acta 118: 299–310

    Article  PubMed  CAS  Google Scholar 

  57. Oaks A 1974 The regulation of nitrate reductase in suspension cultures of soybean cells. Biochim Biophys Acta 372: 122–126

    Article  PubMed  CAS  Google Scholar 

  58. Stewart GR 1972 End product repression of nitrate reductase in Lemna minor L. Symp Biol Hung 13: 127–135

    CAS  Google Scholar 

  59. Oaks A, W Wallace, DL Stevens 1972 Synthesis and turnover of nitrate reductase in corn roots. Plant Physiol 50: 649–654

    Article  PubMed  CAS  Google Scholar 

  60. Oaks A, M Aslam, S Bakyta 1977 Ammonium and amino acids as regulators of nitrate reductase in corn roots. Plant Physiol 59: 381–394

    Article  Google Scholar 

  61. Radin JW 1975 Differential regulation of nitrate reductase inductions in roots and shoots of cotton plants. Plant Physiol 55: 178–182

    Article  PubMed  CAS  Google Scholar 

  62. Blohm D 1972 Untersuchungen zur Aminosäure-Biosynthese und Stickstoff-Assimilation in Keimpflanzenwurzeln. Diss Math Nat Fakultät, Humboldt-Universität, Berlin

    Google Scholar 

  63. Samukawa K, M Yamaguchi 1979 Incorporation of 15N-labeled inorganic nitrogen into amino acids in corn seedlings. Nippon Dojō Hyryō Gakkaishi (Japanese) 50: 323–326

    CAS  Google Scholar 

  64. Oaks A, I Stulen, I Boesel 1979 The effect of amino acids and ammonium on the assimilation of K15N03. Can J Bot 57: 1824–1829

    Article  CAS  Google Scholar 

  65. Srivastava HS, A Oaks, IL Bakyta 1976 The effect of nitrate on early seedling growth in Zea mays. Can J Bot 54: 923–929

    Article  CAS  Google Scholar 

  66. Dale JE, GM Felippe, C Marriott 1974 An analysis of the time of response of young barley seedlings to time of application of nitrogen. Ann Bot 38: 575–588

    Google Scholar 

  67. Pate JS 1973 Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol Biochem 5: 109–119

    Article  CAS  Google Scholar 

  68. Rufty TW, RJ Volk, PR MC Clure, DW Israel, CD Raper 1982 Relative content of N03− and reduced N in xylem exudate as an indicator of root reduction of concurrently absorbed 15N03−. Plant Physiol 69: 166–170

    Article  PubMed  CAS  Google Scholar 

  69. Cataldo DA, M Haroon, LE Schrader, RL Youngs 1975 Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6: 71–80

    Article  CAS  Google Scholar 

  70. Oaks A, O Nelson 1982 Maize mutants deficient in nitrate reductase. Plant Physiol 69(suppl): 112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Oaks, A. (1983). Regulation of Nitrogen Metabolism During Early Seedling Growth. In: Nozzolillo, C., Lea, P.J., Loewus, F.A. (eds) Mobilization of Reserves in Germination. Recent Advances in Phytochemistry, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1167-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1167-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1169-0

  • Online ISBN: 978-1-4684-1167-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics