Skip to main content

Mobilization of Seed Indole-3-Acetic Acid Reserves During Germination

  • Chapter
Mobilization of Reserves in Germination

Part of the book series: Recent Advances in Phytochemistry ((RAPT,volume 17))

Abstract

Seeds contain conjugates of indole-3-acetic acid (IAA), the gibberellins, the cytokinins, and abscisic acid. Hormones other than IAA will not be reviewed in this work and have, been reviewed elsewhere (e.g. Ref. 2). In addition, seeds contain auxins other than IAA as, for example, phenylacetic acid2 and the 4-chloroindole-3-acetic acid of Gander and Nitsch et al, Marumo et al, and Engvild et al, and have been previously reviewed2–4 and will not be considered here. Further, the bulk of this work will be addressed to the seedling of Zea mays since this has been the major subject of our research. It is hoped that by means of these omissions that greater attention and concentration may be centered on the many mysteries and uncertainties concerning the seed as a source of IAA for the growing vegetative tissue of the shoot. The greatest mysteries, of course, are those that have frequently been mentioned throughout this volume including how the shoot “tells” the seed at what rate the reserves should be mobilized and transported, and in the case of the monocotyledonous seedling how materials are moved from the endosperm into the scutellum, from the scutellum into the vascular stele, and from the stele into the vegetative tissue. We can only allude to these important determinants of the early stages of shoot growth in the hope they receive further attention. In the spirit of this belief I hope you will tolerate an introduction that is almost as long as the body of the text.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen JD, RS Bandurski 1982 Chemistry and physiology of the bound auxins. Annu Rev Plant Physiol 33: 403–430

    Article  CAS  Google Scholar 

  2. Sembdner G, D Gross, HW Liebisch, G Schneider 1980 Biosynthesis and metabolism of plant hormones. In J MacMillan, ed, Hormonal Regulation of Development I, Encyclopedia of Plant Physiology, New Series, Vol 9, Springer-Verlag, Berlin pp 281–444

    Chapter  Google Scholar 

  3. Schneider EA, F Wightman 1974 Metabolism of auxin in higher plants. Annu Rev Plant Physiol 25: 487–513

    Article  CAS  Google Scholar 

  4. Schneider EA, F Wightman 1978 Auxins. In DS Lethan, PB Goodwin, TJV Higgins, eds, Phytohormones and Related Compounds. A Comprehensive Treatise, Vol 1, Elsevier/North Holland, Amsterdam pp 29–105

    Google Scholar 

  5. Cholodny NG 1935 Über das keimungshormon von gramineen. Planta 23: 289–312

    Article  CAS  Google Scholar 

  6. Berger J, GS Avery 1944 Chemical and physiological properties of maize auxin precursor. Am J Bot 31: 203–208

    Article  CAS  Google Scholar 

  7. Kögl F, AJ Haagen-Smit, H Erxleben 1934 Über ein neues auxin (heteroauxin) aus harn. Hoppe-Seyler’s Z. Physiol Chem 228: 90–103

    Article  Google Scholar 

  8. Thimann KV 1935 On the plant growth hormone produced by Rhizopus suinus. J Biol Chem 109: 279–291

    CAS  Google Scholar 

  9. Wildman SG, MG Ferri, J Bonner 1947 An enzymatic conversion of tryptophan to auxin by spinach leaves. Arch Biochem 13: 131–146

    PubMed  CAS  Google Scholar 

  10. Schocken V 1949 Genesis of auxin during decomposition of proteins. Arch Biochem 23: 198–204

    PubMed  CAS  Google Scholar 

  11. Labarca C, PB Nicholls, RS Bandurski 1965 A partial characterization of indoleacetylinositols from Zea mays. Biochem Biophys Res Comm 20: 641–646

    Article  PubMed  CAS  Google Scholar 

  12. Loewus FA, DB Dickinson 1982 Cyclitols. In FA Loewus, W Tanner, eds, Plant Carbohydrates I, Encyclopedia of Plant Physiology, New Series, Vol 13A, Springer-Verlag, Berlin pp 193–216

    Google Scholar 

  13. Agranoff BW, JE Bleasdale 1978 The acetylcholine phos-pholipid effect: What has it told us? What is it trying to tell us? In WW Wells and F Eisenberg Jr, eds, Cyclitols and Phosphoinositides, Academic, New York pp 105–120

    Google Scholar 

  14. Hall PJ 1980 Indole-3-acetyl-myo-inositol in kernels of Oryza sativa. Phytochemistry 19: 2121–2122

    Article  CAS  Google Scholar 

  15. Piskornik Z, RS Bandurski 1972 Purification and partial characterization of a glucan containing indole-3-acetic acid. Plant Physiol 50: 176–182

    Article  PubMed  CAS  Google Scholar 

  16. Piskornik Z 1975 Distribution of bound auxins in kernels of sweet corn (Zea mays L.). Acta Biol Cracov 18: 1–12

    Google Scholar 

  17. Ueda M, RS Bandurski 1969 A quantitative estimation of alkali-labile indole-3-acetic acid compounds in dormant and germinating maize kernels. Plant Physiol 44: 1175–1181

    Article  PubMed  CAS  Google Scholar 

  18. Percival FW, RS Bandurski 1976 Esters of indole-3-acetic acid from Avena seeds. Plant Physiol 58: 60–67

    Article  PubMed  CAS  Google Scholar 

  19. Cohen JD 1982 Configuration of the aspartate moiety of indole-3-acetyl-aspartate isolated from soybean. Plant Physiol 69(Suppl): 12

    Google Scholar 

  20. Bandurski RS, A Schulze 1977 The concentration of indole-3-acetic acid and its derivatives in plants. Plant Physiol 60: 211–213

    Article  PubMed  CAS  Google Scholar 

  21. Zenk MH 1962 Aufnahme und Stoffwechsel von a-naphthyl-essigsäure durch erbsenepicotyle. Planta 58: 75–94

    Article  CAS  Google Scholar 

  22. Hangarter RP, MD Peterson, NE Good 1980 Biological activities of indoleacetylamino acids and their use as auxins in tissue culture. Plant Physiol 65: 761–767

    Article  PubMed  CAS  Google Scholar 

  23. Hatcher ESJ 1943 Auxin production during development of the grain in cereals. Nature 151: 278–279

    Article  CAS  Google Scholar 

  24. Epstein E, JD Cohen, RS Bandurski 1980 Concentration and metabolic turnover of indole in germinating kernel of Zea mays L. Plant Physiol 65: 415–421

    Article  PubMed  CAS  Google Scholar 

  25. Reinecke DM, RS Bandurski 1981 Metabolic conversion of 14C-indole-3-acetic acid to 14C-oxindole-3-acetic acid. Biochem Biophys Res Comm 103: 429–433

    Article  PubMed  CAS  Google Scholar 

  26. Skoog F 1937 A deseeded Avena test method for small amounts of auxin and auxin precursors. J Gen Physiol 20: 311–334

    Article  PubMed  CAS  Google Scholar 

  27. Nowacki J, RS Bandurski 1980 myo-Inositol esters of indole-3-acetic acid as seed auxin precursors of Zea mays L. Plant Physiol 65: 422–427

    Article  PubMed  CAS  Google Scholar 

  28. Chisnell JR, RS Bandurski 1982 Isolation and characterization of indol-3-yl-acetyl-myo-inositol from vegetative tissue of Zea mays. Plant Physiol 69(Suppl): 55

    Google Scholar 

  29. Hall PJ, RS Bandurski 1981 Hydrolysis of 3H-IAA-myo-inositol by extracts of Zea mays. Plant Physiol 67(Suppl): 2

    Article  Google Scholar 

  30. Hall PL 1978 Movement of indole-3-acetic acid and tryptophan-derived indole-3-acetic acid from the endosperm to the shoot of Zea mays L. Plant Physiol 61: 425–429

    Article  PubMed  CAS  Google Scholar 

  31. Momonoki Y, RS Bandurski 1982 Increase of indol-3-yl-acetic acid in germinating maize. Plant Physiol 69(Suppl): 12

    Google Scholar 

  32. Yomo H, JE Varner 1972 Control of the formation of amylases and proteases in the cotyledon of germinating peas. Plant Physiol 51: 708–715

    Article  Google Scholar 

  33. Pengelly WL, PJ Hall, A Schulze, RS Bandurski 1982 Distribution of free and ester indole-3-acetic acid in the cortex and stele of the Zea mays mesocotyl. Plant Physiol 69: 1304–1307

    Article  PubMed  CAS  Google Scholar 

  34. Greenwood MS, JR Hillman, S Shaw, MB Wilkins 1973 Localization and identification of auxin in roots of Zea mays. Planta 109: 369–374

    Article  CAS  Google Scholar 

  35. Bridges IG, JR Hillman, MB Wilkins 1973 Identification and localization of auxin in primary roots of Zea mays by mass spectrometry. Planta 115: 189–192

    Article  CAS  Google Scholar 

  36. Goldsmith MHM 1977 The polar transport of auxin. Annu Rev Plant Physiol 28: 439–478

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Bandurski, R.S. (1983). Mobilization of Seed Indole-3-Acetic Acid Reserves During Germination. In: Nozzolillo, C., Lea, P.J., Loewus, F.A. (eds) Mobilization of Reserves in Germination. Recent Advances in Phytochemistry, vol 17. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1167-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1167-6_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1169-0

  • Online ISBN: 978-1-4684-1167-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics