Skip to main content

The Interaction of Tunneling Electrons with Molecular Vibrations

  • Chapter
Tunneling Spectroscopy
  • 173 Accesses

Abstract

Electrons can tunnel with appreciable probability from one metal electrode to the other in metal-insulator-metal tunneling junctions if the insulating layers are sufficiently thin ( ~ 30 Å). If no energy is lost by the electrons in the transition, the tunneling is called elastic. Inelastic electron tunneling, in which electrons in filled states on one side of the metal lose energy to some excitation in the barrier region, but still have enough energy to finish up in a previously empty final state on the other side of the barrier, can also occur. The inelastic tunneling process occurs, for the low temperatures at which tunneling spectra are run, only if the bias energy eV is greater than the excitation energy ћω. Since the inelastic tunneling process represents an additional tunneling channel, the total conductance of the junction is greater for biases above the onset voltage V= ћω/e than below it. The conductance increases are quite small, so that second derivatives of the current-voltage characteristics of the junctions are taken: the steps in conductance then appear as peaks, each peak corresponding to the excitation of a particular vibrational mode of the barrier region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Giaever, in Tunneling Phenomena in Solids ( E. Burstein and S. Lundquist, eds.), pp. 255–271, Plenum Press, New York (1969).

    Google Scholar 

  2. W. L. McMillan and J. M. Rowell, Lead phonon spectrum calculated from superconducting density of states, Phys. Rev. Lett. 14, 108–112 (1965).

    Article  CAS  Google Scholar 

  3. J. Klein, A. Leger, M. Belin, D. Defourneau, and M. J. L. Sangster, Inelastic electron tunneling spectroscopy of metal-insulator-metal junctions, Phys. Rev. B 7, 2336–2348 (1973).

    Article  CAS  Google Scholar 

  4. G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York (1945).

    Google Scholar 

  5. E. Evans and D. L. Mills, Theory of inelastic scattering of slow electrons by long-wavelength surface optical phonons, Phys. Rev. B 5, 4126–4139 (1972).

    Article  Google Scholar 

  6. H. Ibach, Comparisons of cross sections in high-resolution electron-energy-loss spectroscopy and infrared reflection spectroscopy, Surf. Sci. 66, 56–66 (1972).

    Article  Google Scholar 

  7. D. J. Scalapino and S. M. Marcus, Theory of inelastic electron-molecule interactions in tunnel junctions, Phis. Rev. Lett. 18, 459–461 (1967).

    Article  CAS  Google Scholar 

  8. J. Lambe and R. C. Jaklevic, Molecular vibration spectra by inelastic electron tunneling, Phys. Rev. 165, 821–832 (1968).

    Article  CAS  Google Scholar 

  9. John Kirtley, D. J. Scalapino, and P. K. Hansma, Theory of vibrational mode intensities in inelastic electron tunneling spectroscopy, Phys. Rev. B 14, 3177–3184 (1976).

    Article  CAS  Google Scholar 

  10. John Kirtley and James T. Hall, Theory of intensities in inelastic electron tunneling spectroscopy: Orientation of absorbed molecules, Phys. Rey. B 22, 848–856 (1980).

    Article  CAS  Google Scholar 

  11. John Kirtley and Paul Soven, Multiple-scattering theory of intensities in inelastic electron tunneling spectroscopy, Phys. Rev. B 19, 1812–1817 (1979).

    Article  CAS  Google Scholar 

  12. Elias Burstein and Stig Lundquist, eds. Tunneling Phenomena in Solids, Plenum Press, New York (1966).

    Google Scholar 

  13. A. D. Brailsford and L. C. Davis, Impurity assisted inelastic tunneling: One-electron theory, Phys. Rev. B 2, 1708–1713 (1970).

    Article  Google Scholar 

  14. L. C. Davis, Impurity-assisted inelastic tunneling: Many electron theory, Ph ys. Rev. B 2, 1714–1732 (1970).

    Article  Google Scholar 

  15. C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, A direct calculation of the tunneling current: IV. Electron-phonon interaction effects, Solid State Phys. 5, 21–42 (1972).

    Article  CAS  Google Scholar 

  16. T. E. Feuchtwang, Tunneling theory without the transfer Hamiltonian formalism: V. A theory of inelastic electron tunneling spectroscopy, Phys. Rev. B 20, 430–455 (1979).

    Article  CAS  Google Scholar 

  17. J. Bardeen, Tunneling from a many particle point of view, Phys. Rev. Lett. 6, 57–59 (1961).

    Article  CAS  Google Scholar 

  18. L. I. Schiff, Quantum Mechanics, p. 269, McGraw-Hill, New York (1968).

    Google Scholar 

  19. M. H. Cohen, L. M. Falicov, and J. C. Phillips, Superconductive tunneling, Phys. Rev. Lett. 8, 316–318 (1962).

    Article  Google Scholar 

  20. B. D. Josephson, Possible new effects in superconductive tunneling, Phys. Lett. 1, 251–253 (1962).

    Article  Google Scholar 

  21. J. D. Langen and P. K. Hansma, Can the concentration of surface species be measured with inelastic tunneling?, Surf. Sci. 52, 211–216 (1975).

    Article  Google Scholar 

  22. S. L. Cunningham, W. H. Weinberg, and J. R. Hardy, in Inelastic Electron Tunneling Spectroscopy ( T. Wolfram, ed.), pp. 129–143, Springer-Verlag, New York (1977).

    Google Scholar 

  23. A. A. Cederberg, Inelastic electron tunneling spectroscopy: Intensity as a function of surface coverage, Surf. Sci. 103, 148–176 (1981).

    Article  CAS  Google Scholar 

  24. N. I. Bogatina, I. K. Yanson, B. I. Verkin, and A. G. Batrak, Tunneling spectra of organic solvents, Soy. Phys.-JETP 38, 1162–1165 (1974).

    Google Scholar 

  25. M. G. Simonsen, R. V. Coleman, and P. K. Hansma, High-resolution inelastic tunneling spectroscopy of macromolecules and adsorbed species with liquid phase doping, J. Chem. Phys. 61, 3789–3799 (1974).

    Article  CAS  Google Scholar 

  26. K. W. Hipps, Ursula Mazur, and M. S. Pearce, A tunneling spectroscopy study of the adsorption of ferrocyanide from water solution by Al2O3. Chem. Phys. Lett. 68, 433–437 (1979).

    Article  CAS  Google Scholar 

  27. W. F. Brinkman, R. C. Dynes, and J. M. Rowell, Tunneling conductance of asymmetrical barriers, J. Appl. Phys. 41, 1915–1921 (1970).

    Article  CAS  Google Scholar 

  28. R. B. Floyd and D. G. Walmsley, Tunneling conductance of clean and doped Al-A1I-Pb junctions, J. Phys. C 11, 4601–4614 (1978).

    Article  Google Scholar 

  29. D. G. Walmsley, R. B. Floyd, and W. E. Timms, Conductance of clean and doped tunnel junctions, Solid State Commun. 22, 497–499 (1977).

    Article  CAS  Google Scholar 

  30. M. F. Muldoon, R. A. Dragoset, and R. V. Coleman, Tunneling asymmetries in doped Al-A1Ox-Pb junctions, Phys. Rey. B 20, 416–429 (1979).

    Article  CAS  Google Scholar 

  31. C. S. Korman, J. C. Lau, A. M. Johnson, and R. V. Coleman, Studies of aromatic-ring compounds absorbed on alumina and magnesia using inelastic electron tunneling, Phys. Rey. B 19, 994–1014 (1979).

    Article  CAS  Google Scholar 

  32. J. C. Lau and R. V. Coleman, Ag-vs-Pb electrodes in inelastic electron tunneling spectroscopy, Phys. Rev. B. 24, 2985 (1981).

    Article  CAS  Google Scholar 

  33. K. W. Hipps and Ursula Mazur, An inelastic tunneling spectroscopy study of some iron cyanide complexes, J. Phys. Chem. 84, 3162–3172 (1980).

    Article  CAS  Google Scholar 

  34. J. Rath and T. Wolfram, in Inelastic Electron Tunneling Spectroscopy (T. Wolfram, ed.), pp. 92–102, Springer-Verlag, New York (1977).

    Google Scholar 

  35. L. M. Godwin, H. W. White, and R. Elliatioglu, Comparison of experimental and theoretical inelastic electron tunneling spectra for formic acid, Phys. Rev. B 23, 5688 (1981).

    Article  CAS  Google Scholar 

  36. James T. Hall and Paul K. Hansma, Adsorption and orientation of sulfonic acids on aluminum oxide: A tunneling spectroscopic study, Surf. Sci. 71, 1–14 (1978).

    Article  CAS  Google Scholar 

  37. A. Hartstein, J. R. Kirtley, and J. C. Tsang, Enhancement of infrared absorption form molecular monolayers with thin metal overlayers, Phys. Rev. Lett. 45, 201–204 (1980).

    Article  CAS  Google Scholar 

  38. J. W. Davenport, W. Ho, and J. R. Schrieffer, Theory of vibrational inelastic electron scattering from oriented molecules, Phys. Rev. B 17, 3115–3127 (1978).

    Article  CAS  Google Scholar 

  39. R. Kroeker, W. C. Kaska, and P. K. Hansma, How carbon monoxide bonds to alumina supported rhodium particles, J. Catal. 57 72–79 (1979).

    Article  CAS  Google Scholar 

  40. I. K. Yanson, N. I. Bogatina, B. I. Verkin, and O. I. Shklyarevski, Asymmetry of tunnel spectrum intensities of impurity organic molecules, Soy. Phys.-JETP 35, 540–543 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Kirtley, J. (1982). The Interaction of Tunneling Electrons with Molecular Vibrations. In: Hansma, P.K. (eds) Tunneling Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1152-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1152-2_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1154-6

  • Online ISBN: 978-1-4684-1152-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics