Skip to main content

Computer-Assisted Determination of Peak Profiles, Intensities, and Positions

  • Chapter

Abstract

The essential prerequisite for determination of peak profiles and intensities is calibrated tunneling spectra. The first sections of this chapter will introduce a simple calibration scheme which can be implemented with any type of measurement system assisted by a minicomputer, microcomputer, or sophisticated calculator. The approach will be of a tutorial nature so that the experimenter can obtain the knowledge necessary to interface his own measurement system for use with a computer-controlled data acquisition system. Practical aspects of calibration, shortcuts, and tricks will be discussed in detail along with software-hardware tradeoffs. Following the details of calibration, the subtraction of backgrounds to IET peaks will be discussed in detail along with peak profiles in both the normal and superconducting states, from which peak intensities are easily determined The use of differential inelastic electron tunneling spectra (DIETS) will be briefly mentioned.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. Giaever, Energy gap in superconductors measured by electron tunneling, Phys. Rev. Lett. 5, 147–148 (1960).

    Article  Google Scholar 

  2. D. E. Thomas and J. M. Klein, Tunneling current structure resolution by differentiation, Rev. Sci. Instrum. 34, 920–924 (1963).

    Article  CAS  Google Scholar 

  3. J. S. Rogers, J. G. Adler, and S. B. Woods, Apparatus for measuring characteristics of superconducting tunnel junctions, Rev. Sci. Instrum. 35, 208–213 (1964).

    Article  Google Scholar 

  4. Ivar Giaever and Karl Megerle, Study of superconductors by electron tunneling, Phvs. Rev. 122, 1101–1111 (1961).

    Article  CAS  Google Scholar 

  5. I. Giaever, H. R. Hart, Jr., and K. Megerle, Tunneling into superconductors at temperature below 1 K, Phys. Rev. 126, 941–948 (1962).

    Article  CAS  Google Scholar 

  6. William R. Patterson and J. Shewchun, Alternate approach to the resolution of tunneling current structure by differentiation, Rev. Sci. Instrum. 35, 1704–1707 (1964).

    Article  Google Scholar 

  7. D. E. Thomas and J. M. Rowell, Low level second harmonic detection system, Rev. Sci. Instrum. 36, 1301–1305 (1965).

    Article  Google Scholar 

  8. J. G. Adler and J. E. Jackson, System for observing small nonlinearities in tunnel junctions, Rev. Sci. Instrum. 37, 1049–1054 (1966).

    Article  CAS  Google Scholar 

  9. A. Gaudefroy-Demonbynes, E. Guyon, A. Martinet, and J. Sanchez, Dérivées premières et secondes de la caractéristique d’une jonction tunnel, Rev. Phys. Appl. 1, 18–22 (1966).

    Article  Google Scholar 

  10. J. Lambe and R. C. Jaklevic, Molecular vibration spectra by inelastic electron tunneling, Phys. Rev. 165, 821–832 (1968).

    Article  CAS  Google Scholar 

  11. I I. Andrew Longacre, Jr., Biasing circuitry for tunnel junctions, Rev. Sci. Instrum. 41, 448–449 (1970).

    Article  Google Scholar 

  12. J. S. Rogers, Conductance bridge for electron tunneling measurements, Rev. Sci. Instrum. 41, 1184–1186 (1970).

    Article  Google Scholar 

  13. J. G. Adler, T. T. Chen, and J. Straus, High-resolution electron tunneling spectroscopy, Rev. Sci. Instrum. 42, 362–368 (1971).

    Article  Google Scholar 

  14. B. L. Blackford, Low impedance supply for tunnel junctions, Rev. Sci. Instrum. 42, 1198–1202 (1971).

    Article  Google Scholar 

  15. A. F. Hebard and P. W. Shumate, A new approach to high-resolution measurements of structure in superconducting tunneling currents, Rev. Sci. Instrum. 45, 529–533 (1974).

    Article  CAS  Google Scholar 

  16. J. G. Adler and J. Straus, Application of minicomputers in high-resolution electron tunneling, Rev. Sci. Instrum. 46, 158–163 (1975).

    Article  Google Scholar 

  17. S. Colley and P. Hansma, Bridge for differential tunneling spectroscopy, Rev. Sci. Instrum. 48, 1192–1195 (1977).

    Article  CAS  Google Scholar 

  18. R. C. Jaklevic and M. R. Gaerttner, Inelastic electron tunneling spectroscopy. Experiments on external doping of tunnel junctions by an infusion technique, Appl. Surf. Sci. 1, 479–502 (1978).

    Article  CAS  Google Scholar 

  19. Ursula Mazur and K. W. Hipps, An inelastic electron tunneling spectroscopy study of the adsorption of NCS, OCN, and CN from water solution by Al2O3, J. Phys. Chem. 83, 2773–2777 (1979).

    Article  CAS  Google Scholar 

  20. M. V. Moody, J. L. Paterson, and R. L. Ciali, High-resolution dc-voltage-biased ac conductance bridge for tunnel junction measurements, Rev. Sci. Instrum. 50, 903–908 (1979).

    Article  CAS  Google Scholar 

  21. L. D. Flesner and A. H. Silver, Improved method of measuring tunneling conductance, Rev. Sci. Instrum. 51, 1411–1412 (1980).

    Article  Google Scholar 

  22. Andrew A. Cederberg, Inelastic electron tunneling spectroscopy: Intensity as a function of surface coverage, Surf Sci. 103, 148–176 (1981).

    Article  CAS  Google Scholar 

  23. A. B. Dargis, Digital inelastic electron tunneling spectrometer, Rev. Sci. Instrum. 52, 46–51 (1981).

    Article  CAS  Google Scholar 

  24. R. Magno and J. G. Adler, Data calibration in electron tunneling spectroscopy, Rev. Sci. Instrum. 52, 217–223 (1981).

    Article  CAS  Google Scholar 

  25. IEEE Standard Digital Interface for Programmable Instrumentation (IEEE Std 488–1975), The Institute of Electrical and Electronic Engineers, Inc., New York (1975).

    Google Scholar 

  26. J. Klein, A. Leger, M. Bell, D. Défourneau, and M. J. L. Sangster, Inelastic electron tunneling spectroscopy of metal-insulator-metal junctions, Phys. Rev. B 7, 2336–2349 (1973).

    Article  CAS  Google Scholar 

  27. M. Mikkor and W. C. Vassel, Phonon and plasmon interactions in metal-semiconductor tunneling junctions, Phys. Rev. B 2, 1875–1887 (1970).

    Article  Google Scholar 

  28. R. Magno and J. G. Adler, Intensity and lineshape measurements in inelastic electron tunneling spectroscopy, J. Appl. Phys. 49, 5571–5575 (1978).

    Article  CAS  Google Scholar 

  29. J. Kirtley and P. K. Hansma, Vibrational-mode shifts in inelastic electron tunneling spectroscopy: Effects due to superconductivity and surface interactions, Phys. Rev. B 13 2910–2917 (1976).

    Article  CAS  Google Scholar 

  30. R. Magno and J. G. Adler, A study of chemisorption of formic acid on different surfaces by electron tunneling, J. AppL Phys. 49, 4465–4467 (1978).

    Article  CAS  Google Scholar 

  31. J. G. Adler, M. K. Konkin, and R. Magno, The technology of LETS, in Inelastic Electron Tunneling Spectroscopy ( T. Wolfram, ed.) Springer-Verlag, Berlin (1978).

    Google Scholar 

  32. J. G. Adler, M. K. Konkin, D. P. Mullin, M. A. Ocampo, and J. Urias (to be published).

    Google Scholar 

  33. DC300A Data cartridge.

    Google Scholar 

  34. M. K. Konkin, R. Magno, and J. G. Adler, The use of barrier parameters for the characterization of electron tunneling conductance curves, Solid State Commun. 26, 949–952 (1978).

    Article  CAS  Google Scholar 

  35. R. Magno and J. G. Adler, The dependence of metal-insulator-metal conductance curves on chemisorbed ion concentration in the barrier, Surf. Sci. 78, L250 - L256 (1978).

    Article  CAS  Google Scholar 

  36. M. K. Konkin and J. G. Adler, Annealing effects in tunnel junctions (thermal annealing), J. Appl. Phys. 50, 8125–8128 (1979).

    Article  CAS  Google Scholar 

  37. M. K. Konkin and J. G. Adler, Annealing effects in tunnel junctions (voltage annealing), J. Appl. Phys. 51, 5450–5454 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Adler, J.G. (1982). Computer-Assisted Determination of Peak Profiles, Intensities, and Positions. In: Hansma, P.K. (eds) Tunneling Spectroscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1152-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1152-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1154-6

  • Online ISBN: 978-1-4684-1152-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics