Skip to main content

Nerve Fiber Growth and Its Regulation by Extrinsic Factors

  • Chapter

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

A remarkable feature of embryogenesis is the elaborate extension of axons by neurons to target cells in the nervous system and in other organs. This growth of nerve fibers often traces characteristic pathways to produce specific patterns of innervation. Such precise organization requires a high degree of regulation, and manipulations of embryonal and regenerating tissues have shown that axons are usually directed by cues within the environments through which they grow.1–4 This essay discusses how axons grow and examines two factors, cell-substratum adhesion and chemotactic responses, as principal environmental regulators of axonal growth. Discussion is restricted to tissue culture studies, because growing nerve fibers are more easily observed, manipulated, and subjected to high-resolution morphological and cytochemical studies in vitro than in vivo. In addition, potential extrinsic modulators of nerve fiber growth can be tested and thoroughly evaluated in vitro.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Constantine-Paton, M., 1979. Axonal navigation, Biosci. 29: 526.

    Google Scholar 

  2. Katz, M. J., and Lasek, R. J., 1980, Guidance cue patterns and cell migration in multicellular organisms, Cell Motil. 1: 141.

    Google Scholar 

  3. Landmesser, L. T., 1980, The generation of neuromuscular specificity, Ann. Rev. Neurosci. 3: 279.

    Google Scholar 

  4. Sidman, R. L., and Wessells, N. K., 1975, Control of direction of growth during the elongation of neuntes, Exp. Neurol. 48: 237.

    Google Scholar 

  5. Ramón y Cajal, S., 1980, Sur l’origine et les ramifications des fibres nerveuses de la moelle embryonaire, Anat. Anz. 5: 609, 631.

    Google Scholar 

  6. Bray, D., 1982, Filopodial contraction and growth cone guidance, in: Cell Behaviors ( G. Dunn, Confis, and Bellairs, eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  7. Johnston, R., and Wessells, N. K., 1980, Regulation of the elongating nerve fiber, Curr. Top. Dev. Biol. 16: 165.

    Google Scholar 

  8. Wessells, N. K., 1982, in: Cell Behaviors (G. Dunn, Contis, and Bellairs, eds.), Cambridge University Press, Cambridge.

    Google Scholar 

  9. Harrison, R. G., 1907, Observations on the living developing nerve fiber, Anat. Rec. 1: 116.

    Google Scholar 

  10. Harrison, R. G., 1910, The growth of the nerve fiber as a mode of protoplasmic movement, J. Exp. Zool. 9: 787.

    Google Scholar 

  11. Costero, I., and Pomerat, C. M., 1951, Cultivation of neurons from adult cerebral and cerebellar cortex, Am. J. Anat. 89: 405.

    Google Scholar 

  12. Godina, G., 1963, The morphological and structural features of neurons in vitro studied by phase contrast and time-lapse movies, in Cinemicrography in Cell Biology ( G. G. Rose, ed.), pp. 313–338, Academic Press, New York.

    Google Scholar 

  13. Hughes, A., 1953, The growth of embryonic neuntes, J. Anat. 87: 150.

    Google Scholar 

  14. Luduena, M. A., and Wessells, N. K., 1973, Cell locomotion, nerve elongation, and microfilaments, Dev. Biol. 30: 427.

    Google Scholar 

  15. Pomerat, C. M., Hendelman, W. J., Raibom, C. W. and Massey, J. F., 1967, Dynamic activities of nervous tissue in vitro,in: The Neuron (H. Hyden, ed.), pp. 119–178, Elsevier, Amsterdam.

    Google Scholar 

  16. Bray, D., 1970, Surface movements during the growth of single explanted neurons, Proc. Natl. Acad. Sci. U.S.A. 65: 905.

    Google Scholar 

  17. Bray, D., and Bunge, M. B., 1973, The growth cone in neurite extension, in Locomotion of Tissue Cells, Ciba Foundation Symposium 14 (new series), pp. 195–209, Associated Scientific Publishers, Amsterdam.

    Google Scholar 

  18. Carbonetto, S., and Argon, Y., 1980, Lectins induce the redistribution and internalization of receptors on the surface of cultured neurons, Dev. Biol. 80: 364.

    Google Scholar 

  19. Letourneau, P. C., 1979, Inhibition of intercellular adhesion by canavalin A in association with conA-induced redistribution of surface receptors, J. Cell Biol. 80: 128.

    Google Scholar 

  20. Pfenninger, K. H., and Maylie-Pfenninger, M. F., 1978, Characterization, distribution, and appearance of surface carbohydrates on growing neuntes, in: Neuronal Information Transfer ( A. Karlin, V. M. Tennyson, and H. J. Vogel, eds.), pp. 373–386, Academic Press, New York.

    Google Scholar 

  21. Campenot, R. B., 1977, Local control of neurite development by nerve growth factor, Proc. Natl. Acad. Sci. U.S.A. 74: 4516.

    Google Scholar 

  22. Harper, G. P. and Thoenen, H., 1980, Nerve growth factor: Biological significance, measurement, and distribution, J. Neurochem. 34: 5.

    Google Scholar 

  23. Stoeckel, K., Schwab, M., and Thoenen, H., 1975, Specificity of retrograde transport of nerve growth factor (NGF) in sensory neurons: A biochemical and morphological study, Brain Res. 89: 1.

    Google Scholar 

  24. Weiss, P., 1934, In vitro experiments on the factors determining the course of the outgrowing nerve fiber, J. Exp. Zool. 68: 393.

    Google Scholar 

  25. Weiss, P., 1941, Nerve patterns: The mechanics of nerve growth, Growth (Third Growth Symp. Suppl.) 5: 163.

    Google Scholar 

  26. Weiss, P., 1961, Guiding principles in cell locomotion and cell aggregation, Exp. Cell Res. Suppl. 8: 260.

    Google Scholar 

  27. Harrison, R. G., 1914, The reaction of embryonic cells to solid structure, J. Exp. Zool. 7: 521.

    Google Scholar 

  28. Nakai, J., 1960, Studies on the mechanism determining the course of nerve fibers in tissue culture. II. The mechanism of fasciculation. Z. Zellforsch. Mikrosk. Anat. 52: 427.

    Google Scholar 

  29. Dunn, G. A., 1971, Mutual contact inhibition of extension of chick sensory nerve fibers in vitro, J. Comp. Neurol. 143: 491.

    Google Scholar 

  30. Nakai, J., and Kawasaki, Y., 1959, Studies on the mechanism determining the course of nerve fibers in tissue culture. I. The reactions of the growth cone to various obstructions. Z. Zellforsch. Mikrosk. Anat. 51: 108.

    Google Scholar 

  31. Nakajima, S., 1965, Selectivity in fasciculation of nerve fibers in vitro, J. Comp. Neurol. 125: 193.

    Google Scholar 

  32. Abercrombie, M., Dunn, G. A., and Heath, J. P., 1977, The shape and movement of fibroblasts in culture, in: Cell and Tissue Interactions ( J. W. Lash and M. M. Burger, eds.), pp. 57–70, Raven Press, New York.

    Google Scholar 

  33. Harris, A., 1973, Location of cellular adhesions to solid substrata, Dev. Biol. 35: 83.

    Google Scholar 

  34. Huxley, H. E., 1973, Muscular contraction and cell motility, Nature (London) 243: 445.

    Google Scholar 

  35. Hynes, R. O., and Destree, A. T., 1978, Relationships between fibronectin (LETS protein) and actin, Cell 15: 875.

    Google Scholar 

  36. Gail, M. H., and Boone, C. W., 1972, Cell-substrate adhesivity, Exp. Cell. Res. 70: 33.

    Google Scholar 

  37. Letoumeau, P. C., and Wessells, N. K., 1974, Migratory cell locomotion versus nerve axon elongation. Differences based on the effects of Lanthanum ion, J. Cell Biol. 61: 56.

    Google Scholar 

  38. Strassman, R. J., Letourneau, P. C., and Wessells, N. K., 1973, Elongation of axons in an agar matrix that does not support cell locomotion, Exp. Cell Res. 81: 482.

    Google Scholar 

  39. Letourneau, P. C., 1975, Possible roles for cell-to-substratum adhesion in neuronal morphogenesis, Dev. Biol. 44: 77.

    Google Scholar 

  40. Collins, F., 1978, Induction of neurite outgrowth by a conditioned-medium factor bound to the culture substratum, Proc. Natl. Acad. Sci. U.S.A. 75: 5210.

    Google Scholar 

  41. Collins, F., and Garrett, J. E., 1980, Elongating nerve fibers are guided by a pathway material released by embryonic non-neuronal cells, Proc. Natl. Acad. Sci. U.S.A. 77: 6226.

    Google Scholar 

  42. Grinnell, F., 1978, Cellular adhesiveness and extracellular substrata, Int. Rev. Cytol. 29: 65.

    Google Scholar 

  43. Grinnell, F., and Minter, D., 1978, Attachment and spreading of baby hamster kidney cells to collagen substrata. Effects on cold-insoluble globulin, Proc. Natl. Acad. Sci. U.S.A. 75: 4408.

    Google Scholar 

  44. Luduena, M. A., 1973, The growth of spinal ganglion neurons in serum-free medium, Dev. Biol. 33: 470.

    Google Scholar 

  45. Izzard, C. S., and Lochner, L. R., 1976, Cell-to-substrate contacts in living fibroblasts: An interference reflexion study with an evaluation of the technique, J. Cell. Sci. 21: 129.

    Google Scholar 

  46. Letoumeau, P., 1979, Cell-substratum adhesion of neurite growth cones and its role in neurite elongation, Exp. Cell. Res. 124: 127.

    Google Scholar 

  47. Palay, S. L., and Chan-Palay, V., 1977, General morphology of neurons and neuroglia, in: Handbook of Physiology I: The Nervous System ( E. R., Kandel, ed.), pp. 5–37, Waverly Press, Baltimore, MD.

    Google Scholar 

  48. Tennyson, V. M., 1970, The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo, J. Cell Biol. 44: 62.

    Google Scholar 

  49. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell. Biol. 49: 614.

    Google Scholar 

  50. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell. Biol. 49: 614.

    Google Scholar 

  51. Daniels, M., 1975, Role of microtubules in growth and stabilization of nerve fibers, Ann. N.Y. Acad. Sci. 253: 535.

    Google Scholar 

  52. Lasek, R. J., and Hoffman, P. N., 1976, The neuronal cytoskeleton, axonal transport and axonal growth, in: Cell Motility (R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 1021–1049, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  53. Lazarides, E., 1980, Intermediate filaments as mechanical integrators of cellular space, Nature (London) 283: 249.

    Google Scholar 

  54. Daniels, M. P., 1973, Fine structural changes in neurons and nerve fibers associated with colchicine inhibition of nerve fiber formation in vitro, J. Cell Biol. 58: 463.

    Google Scholar 

  55. Heuser, J. E., and Kirschner, M. W., 1980, Filament organization revealed in platinum replicas of freeze-dried cytoskeletons, J. Cell Biol. 86: 212.

    Google Scholar 

  56. Spooner, B. S., Yamada, K. M., and Wessells, N. K., 1971, Microfilaments and cell locomotion, J. Cell Biol. 49: 593.

    Google Scholar 

  57. Ellisman, M. H., and Porter, K. R., 1980, Microtrabecular structure of the axoplasmic matrix; visualization of cross-linking structures and their distribution, J. Cell Biol. 87: 464.

    Google Scholar 

  58. Bray, D., and Gilbert, D., 1980, Cytoskeletal elements in neurons, Ann. Rev. Neurosci. 4: 505.

    Google Scholar 

  59. Chang, C.-M., and Goldman, R. D., 1973, The localization of actin-like fibers in cultured neuroblastoma cells as revealed by heavy meromyosin binding, J. Cell Biol. 57: 867.

    Google Scholar 

  60. Bray, D., Thomas, C., and Shaw, G., 1978, Growth cone formation in cultures of sensory neurons, Proc. Natl. Acad. Sci. U.S.A. 75: 5226.

    Google Scholar 

  61. Fernandez, H. L., and Samson, F. E., 1973, Axoplasmic transport: Differential inhibition by cytochalasin-B, J. Neurobiol. 4: 201.

    Google Scholar 

  62. Ochs, S., and Worth, R. M., 1978, Axoplasmic transport in normal and pathological systems, in: Physiology and Pathobiology of Axons ( S. G. Waxman, ed.), pp. 251–264, Raven Press, New York.

    Google Scholar 

  63. Bunge, M. B., 1973, Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culure, J. Cell Biol. 56: 713.

    Google Scholar 

  64. Bunge, M. B., 1977, Initial endocytosis of peroxidase or ferritin by growth cones of cultured nerve cells, J. Neurocytol. 6: 407.

    Google Scholar 

  65. Droz, B., Rambourg, A., and Koenig, H. L., 1975, The smooth endoplasmic reticulum: Structure and role in the renewal of axonal membrane and synaptic vesicles by fast axonal transport, Brain Res. 93: 1.

    Google Scholar 

  66. Wessells, N. K., Luduena, M. A., Letourneau, P. C., Wrenn, J. T., and Spooner, B. S., 1974, Thorotrast uptake and transit in embryonic glia, heart fibroblasts and neurons in vitro, Tissue Cell 6: 757.

    Google Scholar 

  67. Bray, D., 1973, Model for membrane movements in the neural growth cone, Nature (London) 244: 93.

    Google Scholar 

  68. Kuczmarski, E. R., and Rosenbaum, J. L., 1979, Studies on the organization and localization of actin and myosin in neurons, J. Cell Biol. 80: 356.

    Google Scholar 

  69. Nuttall, R. P., and Wessells, N. K., 1979, Veils, mounds, and vesicle aggregates in neurons elongating in vitro. Exp. Cell Res. 119: 163.

    Google Scholar 

  70. Letourneau, P. C., 1981, Immunocytochemical evidence for colocalization in neurite growth cones of actin and myosin and their relationship to cell-substratum adhesions, Dev. Biol. 85: 113.

    Google Scholar 

  71. Shaw, G., and Bray, D., 1977, Movement and extension of isolated growth cones, Exp. Cell Res. 104: 55.

    Google Scholar 

  72. Wessells, N. K., Johnson, S. R., and Nuttall, R. P., 1978, Axon initiation and growth cone regeneration in cultured motor neurons, Exp. Cell Res. 117: 335.

    Google Scholar 

  73. Bray, D., 1973, Branching patterns of individual sympathetic neurons in culture, J. Cell Biol. 56: 702.

    Google Scholar 

  74. Teichberg, S., and Holtzman, E., 1973, Axonal agranular reticulum and synaptic vesicles in cultured embryonic chick sympathetic neurons, J. Cell Biol. 57: 88.

    Google Scholar 

  75. Birks, R. I., Mackey, M. C. and Weldon, P. R. 1972, Organelle formation from pinocytotic elements in neuntes of cultured sympathetic ganglion. J. Neurocytol. 1: 311.

    Google Scholar 

  76. Rothman, J. E., and Lenard, J., 1977, Membrane asymmetry, Science 195: 743.

    Google Scholar 

  77. Kirschner, M., 1980, Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo, J. Cell Biol. 86: 330.

    Google Scholar 

  78. Margolis, R. L., and Wilson, L., 1978, Opposite end assembly and disassembly of microtubules at steady state in vitro, Cell 13: 1.

    Google Scholar 

  79. Black, M. M., and Lasek, R. J., 1980, Slow components of axonal transport: Two cytoskeletal networks, J. Cell Biol. 86: 616.

    Google Scholar 

  80. Hoffman, P. N., and Lasek, R. J., 1975, The slow component of axonal transport. Identification of major structural polypeptides of the axon and their generality among mammalian neurons, J. Cell Biol. 66: 351.

    Google Scholar 

  81. Willard, M., Wiseman, M., Levine, J., and Skene, P., 1979, Axonal transport of actin in rabbit retinal ganglion cells, J. Cell Biol. 81: 581.

    Google Scholar 

  82. Carbonetto, S., and Fambrough, D. M., 1979, Synthesis, insertion into the plasma membrane and turnover of a-bungarotoxin receptors in chick sympathetic neurons, J. Cell Biol. 81: 555.

    Google Scholar 

  83. Begg, D. A., Rodewald, R., and Rebhum, L. I., 1979, The visualization of actin filament polarity in thin sections, J. Cell Biol. 79: 846.

    Google Scholar 

  84. Mooseker, M. S., 1976, Actin filament-membrane attachment in the microvilli of intestinal epithelial cell, in: Cell Motility, ( R. Goldman, T. Pollard, and J. Rosenbaum, eds.), pp. 631–650, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  85. Small, J. V., Isenberg, G., and Celis, J. E., 1978, Polarity of actin at the leading edge of cultured cells, Nature (London) 272: 638.

    Google Scholar 

  86. Herman, I. M., and Pollard, T. D., 1981, Electron microscopic localization of cytoplasmic myosin with ferritin-labelled antibodies, J. Cell Biol. 88: 346.

    Google Scholar 

  87. Shizuta, Y., Davies, P., Olden, K., and Pastan, I., 1976, Diminished content of plasma membrane-associated myosin in transformed cells, Nature (London) 261: 414.

    Google Scholar 

  88. Mooseker, M. S., Pollard, T. D., and Fujiwara, K., 1978, Characterization and localization of myosin in the brush border of intestinal epithelial cells, J. Cell Biol. 79: 444.

    Google Scholar 

  89. Arora, H. L. and Sperry, R. W., 1962, Optic nerve fiber regeneration after surgical cross-union of medial and lateral optic tracts, Am. Zool. 2: 61.

    Google Scholar 

  90. Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7: 46.

    Google Scholar 

  91. Lance-Jones, C., and Landmesser, L. T., 1978, Effect of spinal cord deletions and reversals on motorneuron projection patterns in the embryonic chick hindlimb, Soc. Neurosci. 4: 118.

    Google Scholar 

  92. Lance-Jones, C., and Landmesser, L. T., 1979, Pathway selection by embryonic chick lumbrosacral motorneurons, Soc. Neurosci. 5:Abst.

    Google Scholar 

  93. Constantine-Paton, M., and Capranica, R. P., 1975, Central projection of optic tract from translocated eyes in the leopard frog (Rana pipiens), Science 189: 480.

    Google Scholar 

  94. Katz, M. J., and Lasek, R. J., 1979, Substrate pathways which guide growing axons in Xenopus embryos, J. Comp. Neurol. 183: 817.

    Google Scholar 

  95. Collins, F., 1978, Axon initiation by ciliary neurons in culture, Dev. Biol. 65: 50.

    Google Scholar 

  96. Helfand, S. L., Smith, G. A., and Wessells, N. K., 1976, Survival and development in culture of dissociated parasympathetic neurons from ciliary ganglia, Dev. Biol. 50: 541.

    Google Scholar 

  97. Letourneau, P. C., 1975, Cell-to-substratum adhesion and guidance of axonal elongation, Dev. Biol. 44: 92.

    Google Scholar 

  98. Bray, D., 1979, Mechanical tension produced by nerve cells in tissue culture, J. Cell Sci. 37:391.

    Google Scholar 

  99. Wessells, N. K., and Nuttall, R. P., 1978, Normal branching, induced branching, and steering of cultured parasympathetic motor neurons, Exp. Cell Res. 115: 111.

    Google Scholar 

  100. Jacobson, M., 1978, Developmental Neurobiology, Plenum Press, New York.

    Google Scholar 

  101. Ash, J. F., Louvard, D., and Singer, S. J., 1977, Antibody-induced linkages of plasma membrane proteins to intracellular actomyosin-containing filaments in cultured fibroblasts, Proc. Natl. Acad. U.S.A. 74: 5584.

    Google Scholar 

  102. Condeelis, J., 1979, Isolation of Concanavalin A caps during various stages of formation and their association with actin and myosin, J. Cell Biol. 80: 751.

    Google Scholar 

  103. Toh, B. H. and Hard, G. C., 1977, Actin co-caps with concanavalin A receptors, Nature (London) 269: 695.

    Google Scholar 

  104. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. U.S.A. 50: 703.

    Google Scholar 

  105. Fraser, S. E., and Hunt, R. K., 1980, Retinotectal specificity, Ann. Rev. Neurosci. 3: 319.

    Google Scholar 

  106. Gaze, R. M., and Keating, M. J., 1972, The visual system and neuronal specificity, Nature (London) 237: 375.

    Google Scholar 

  107. Hunt, R. K., and Jacobson, M., 1972, Development and stability of positional information in Xenopus retinal ganglion cells, Proc. Natl. Acad. Sci. U.S.A. 69: 780.

    Google Scholar 

  108. Barbera, A., 1975, Adhesive recognition between developing retinal cells and the optic tecta of the chick embryo, Den. Biol. 46: 167.

    Google Scholar 

  109. Gottlieb, D. I., Rock, K., and Glaser, L., 1976, A gradient of adhesive specificity in developing avian retina, Proc. Natl. Acad. Sci. U.S.A. 73: 410.

    Google Scholar 

  110. Marchase, R. B., 1977, Biochemical investigations of retino-tectal adhesive specificity, J. Cell Biol. 75: 237.

    Google Scholar 

  111. Collins, F., 1980, Neurite outgrowth induced by substrate-associated material from nonneuronal cells, Dev. Biol. 79: 247.

    Google Scholar 

  112. Hawrot, E., 1980, Cultured sympathetic neurons: Effects of cell-derived and synthetic substrata on survival and development, Dev. Biol. 74: 136.

    Google Scholar 

  113. Adler, R., and Varon, S., 1981, Neurite guidance by polyornithine-attached materials of ganglionic origin, Dev. Biol. 81: 1.

    Google Scholar 

  114. Chen, L. B., Murray, A., Segal, R. A., Bushnell, A., and Walsh, M. L., 1978, Studies on intercellular LETS glycoprotein matrices, Cell 14: 377.

    Google Scholar 

  115. Linder, E., Vaheri, A., Ruoslahti, E., and Wartiovaara, J., 1975, Distribution of fibroblasts surface antigen in the developing chick embryo, J. Exp. Med. 142: 41.

    Google Scholar 

  116. Yamada, K. M., Olden, K., and Hahn, L. H. E., 1980, Cell surface protein and cell interactions, Soc. Den. Biol. Symp. 38: 43.

    Google Scholar 

  117. Dunn, G. A., and Heath, J. P., 1976, A new hypothesis of contact guidance in tissue cells, Exp. Cell Res. 101: 1.

    Google Scholar 

  118. Dunn, G. A. and Ebendal, T., 1978, Some aspects of contact guidance, Zoon Suppl. 6: 65.

    Google Scholar 

  119. Ebendal, T., 1976, The relative roles of contact inhibition and contact guidance in orientation of axons extending on aligned collagen fibrils in vitro, Exp. Cell Res. 98: 159.

    Google Scholar 

  120. Hinds, J. W., and Hinds, P. L., 1972, Reconstruction of dendritic growth cones in neonatal mouse olfactory bulb, J. Neurocytol. 1: 169.

    Google Scholar 

  121. Meinertzhagen, I. A., 1973, Development of the compound eye and optic lobe of insects in Developmental Neurobiology of Arthropods (D. Young, ed.), pp. 51–104, Cambridge, University Press, Cambridge.

    Google Scholar 

  122. Muller, K. J., and Scott, S. A., 1980, Removal of the synaptic target permits terminal sprouting of a mature intact axon, Nature (London) 283: 89.

    Google Scholar 

  123. Murphy, A. D., and Kater, S. B., 1980, Sprouting and functional regeneration of an identified neuron in Helisoma, Brain Res. 186: 251.

    Google Scholar 

  124. Skoff, R. P., and Hamburger, V., 1974, Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord, J. Comp. Neurol. 153: 107.

    Google Scholar 

  125. Speidel, C. C., 1933, Studies of living nerves. II. Activities of ameboid growth cones, sheath cells, and myelin segments, as revealed by prolonged observation of individual nerve fibers in frog tadpoles, J. Anat. 52: 1.

    Google Scholar 

  126. Vaughn, J. E., Hendrikson, C. K., and Grieshaber, J. A., 1974, A quantitative study of synapses on motor neuron dendritic growth cones in developing mouse spinal cord, J. Cell Biol. 60: 664.

    Google Scholar 

  127. Anderson, H., Edwards, J. S., and Palka, J., 1980, Developmental neurobiology of invertebrates, Ann. Rev. Neurosci. 3: 97.

    Google Scholar 

  128. Nordlander, R. H., and Singer, M., 1978, The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail, J. Comp. Neuronal. 180: 349.

    Google Scholar 

  129. Suburo, A., Carri, N., and Adler, R., 1979, Environment of axonal migration in the developing chick retina—A scanning electron-microscopic study, J. Comp. Neurol. 184: 519.

    Google Scholar 

  130. Wessells, N. K., Letourneau, P. C., Nuttall, R. P., Luduena-Anderson, M., and Geiduschek, J. M., 1980, Responses to cell contacts between growth cones, neuntes and ganglionic non-neuronal cells, J. Neurocytol. 9: 647.

    Google Scholar 

  131. Bray, D., Wood, P., and Bunge, R. P., 1980, Selective fasciculation of nerve fibers in culture, Exp. Cell Res. 130: 241.

    Google Scholar 

  132. Rusoff, A. C., and Easter, S. S., 1979, Order in the optic nerve, Science 208: 31.

    Google Scholar 

  133. Letourneau, J. G., 1976, Somatotopic organization of afferent axons in peripheral nerves, J. Comp. Physiol. 110: 25.

    Google Scholar 

  134. Rutishauser, U., and Edelman, G. M., 1980, Effect of fasciculation on the outgrowth of neuntes from spinal ganglia in culture, J. Cell Biol. 87: 370.

    Google Scholar 

  135. Rutishauser, U., Gall, W. E., and Edelman, G. M., 1978, Adhesion among neural cells of the chick embryo. IV. Role of the cell surface molecule CAM in the formation of neurite bundles in cultures of spinal ganglia, J. Cell Biol. 79: 382.

    Google Scholar 

  136. Fraser, S. E., 1980, A differential adhesion approach to the patterning of nerve connections, Dev. Biol. 79: 453.

    Google Scholar 

  137. Bonhoeffer, F., and Huf, J., 1980, Recognition of cell types by axonal growth cones in vitro, Nature (London) 288: 162.

    Google Scholar 

  138. Postlethwaite, A. E., Seyer, J. M., and Kang, A. H., 1978, Chemotactic attraction of human fibroblasts of type I, II, and III collagens and collagen-derived peptides, Proc. Natl. Acad. Sci. U.S.A. 75: 871.

    Google Scholar 

  139. Ramsey, W. S., 1972, Analysis of individual leukocyte behavior during chemotaxis, Exp. Cell Res. 70: 129.

    Google Scholar 

  140. Zigmond, S. H., 1978, Chemotaxis by polymorphonuclear leukocytes, J. Cell Biol. 77: 269.

    Google Scholar 

  141. Ramón y Cajal, S., 1928, Degeneration and Regeneration of the Nervous System, (R. M. May, trans.), Hafner, New York, 1959.

    Google Scholar 

  142. Weiss, P., and Taylor, A. C., 1944, Further experimental evidence against “neurotropism” in nerve regeneration, J. Exp. Zool. 95: 233.

    Google Scholar 

  143. Chamley, J. H., Goller, I., and Burnstock, G., 1973, Selective growth of sympathic nerve fibers to explants of normally densely innervated autonomic effector organs in tissue culture, Dev. Biol. 31: 362.

    Google Scholar 

  144. Coughlin, M. D., 1975, Target organ stimulation of parasympathetic nerve growth in the developing mouse submandibular gland, Dev. Biol. 43: 140.

    Google Scholar 

  145. Ebendal, T., and Jacobson, D. O., 1977, Tissue explants affecting extension and orientation of axons in cultured chick embryo ganglia, Exp. Cell Res. 105: 379.

    Google Scholar 

  146. Charlwood, K. A., Lamont, D. M. and Banks, B. E. C., 1972, Apparent orienting effects produced by nerve growth factor, in: Nerve Growth Factor and Its Antiserum (E. Zaimis and J. Knight), pp. 102–107, Athlone Press, University of London, London.

    Google Scholar 

  147. Levi-Montalcini, R., 1976, The nerve growth factor: Its role in growth, differentiation and function of the sympathetic axon, in: Perspectives in Brain Research, Progress in Brain Research, vol. 45 ( M. A. Corner and D. F. Swaab, eds.), pp. 235–258. Elsevier/ North Holland Biomedical Press, Amsterdam.

    Google Scholar 

  148. Letourneau, P., 1978, Chemotactic response of nerve fiber elongation to nerve growth factor, Dev. Biol. 66: 183.

    Google Scholar 

  149. Gunderson, R. W., and Barrett, J. N., 1979, Neuronal chemotaxis: Chick dorsal root axons turn forward high concentration of nerve growth factor, Science 206: 1079.

    Google Scholar 

  150. Gunderson, R. W., and Barrett, J. N. 1980, Characterization of the turning response of dorsal root neurites toward nerve growth factor, J. Cell Biol. 87: 546.

    Google Scholar 

  151. McNab, R. M., and Koshland, D. E., 1972, Gradient-sensing mechanism in bacterial chemotaxis, Proc. Natl. Acad. Sci. U.S.A. 69: 2509.

    Google Scholar 

  152. Zigmond, S. H., and Sullivan, S. J., 1979, Sensory adaptation of leukocytes to chemotactic peptides, J. Cell Biol. 82: 517.

    Google Scholar 

  153. Griffin, C. G., and Letourneau, P. C., 1980, Rapid retraction of neurites by sensory neurons in response to increased concentrations of nerve growth factor, J. Cell Biol. 86: 156.

    Google Scholar 

  154. Adler, J., 1976, Chemotaxis in bacteria, J. Supramol. Struct. 4: 305.

    Google Scholar 

  155. Schubert, D., LaCorbiere, M., Whitlock, C., and Stallcup, W., 1978, Alterations in the surface properties of cells responsive to nerve growth factor, Nature (London) 273: 718.

    Google Scholar 

  156. Crick, F., 1970, Diffusion in embryogenesis, Nature (London) 225: 420.

    Google Scholar 

  157. Jaffe, L. F., and Poo, M. M., 1979, Neuntes grow faster towards the cathode than the anode in a steady field, J. Exp. Zool. 209: 115.

    Google Scholar 

  158. Jaffe, L., 1977, Electrophoresis along cell membranes, Nature (London) 265: 600.

    Google Scholar 

  159. Fields, K. L., 1979, Cell type-specific antigens of cells of the central and peripheral nervous system, Curr. Top. Devel. Biol. 13: 237.

    Google Scholar 

  160. Fields, K. L., Brockes, J. P., Mirsky, R., and Wendon, L. M. B., 1978, Cell surface markers for distinguishing different types of rat dorsal root ganglion cells in culture, Cell 14: 43.

    Google Scholar 

  161. Gottlieb, D. I., and Glaser, L., 1980, Cellular recognition during neural development, Ann. Rev. Neurosci. 3: 303.

    Google Scholar 

  162. Schachner, M., 1979, Cell surface antigens of the nervous system, Curr. Top. Dev. Biol. 13: 259.

    Google Scholar 

  163. Soltor, D., and Schachner, M., 1976, Brain and sperm cell surface antigen (NS-4) on preimplantation mouse embryos, Dev. Biol. 52: 98.

    Google Scholar 

  164. Geiger, B., 1979, A 130K protein from chicken gizzards. Its localization at the termini of microfilament bundles in cultured chicken cells, Cell 18: 193.

    Google Scholar 

  165. Geiger, B., Tokuyasu, K. T., and Singer, S. J., 1979, Immunocytochemical localization of a-actinin in intestinal epithelial cells, Proc. Natl. Acad. Sci. U.S.A. 76: 2833.

    Google Scholar 

  166. Stossel, T. P., and Hartwig, J. H., 1976, Interaction of actin, myosin, and a new actin-binding protein of rabbit pulmonary macrophages, J. Cell Biol. 68: 602.

    Google Scholar 

  167. Uyemura, D. G. and Spudich, J. A., 1980, Biochemistry and regulation of nonmuscle actins, in: Biological Regulation and Development, vol. 2, ( R. Goldberger, ed.), pp. 315–338, Plenum Press, New York.

    Google Scholar 

  168. Wang, K., and Singer, S. J., 1977, Interaction of filamin with F-actin in solution, Proc. Natl. Acad. Sci., U.S.A. 74: 2021.

    Google Scholar 

  169. Begg, D. A. and Rehbun, L. I., 1979, pH regulates the polymerization of actin in the sea-urchin egg cortex, J. Cell Biol. 83: 241.

    Google Scholar 

  170. Pardee, J. D., and Spudich, J. A., 1980, Mechanism of K+-induced actin assembly, J. Cell Biol. 87: 226a.

    Google Scholar 

  171. Marchisio, P. C., Osborn, M., and Weber, K., 1978, Changes in intracellular organization of tubulin and actin in N-18 neuroblastoma cells during the process of axon extension induced by serum deprivation, Brain Res. 155: 229.

    Google Scholar 

  172. Roisen, F., Inczedy-Maresek, M., Hsu, L. and Yorke, W., 1978, Myosin: Immunofluorescent localization in neuronal and glial cultures, Science 199: 1445.

    Google Scholar 

  173. Heggeness, M. H., Wang, K., and Singer, S. J., 1977, Intracellular distributions of mechanochemical proteins in cultured fibroblasts, Proc. Natl. Acad. Sci. U.S.A. 74: 3883.

    Google Scholar 

  174. Lazarides, E., 1975, Tropomyosin antibody: The specific localization of tropomyosin in nonmuscle cells, J. Cell Biol. 65: 549.

    Google Scholar 

  175. Lazarides, E., 1971, Two general classes of cytoplasmic actin filaments in tissue culture cells: The role of tropomyosin, J. Supramol. Struct. 5: 531.

    Google Scholar 

  176. Zigmond, S. H., Otto, J. J., and Bryan, J., 1979, Organization of myosin in a sub-membranous sheath in well-spread human fibroblasts, Exp. Cell Res. 119: 205.

    Google Scholar 

  177. Banker, G. A., and Cowan, W. M., 1978, Further observations on hippocampal neurons in dispersed cell culture, J. Comp. Neurol. 187: 469.

    Google Scholar 

  178. Goodman, C. S., 1974, Anatomy of locust ocellar interneurons: Constancy and variability, J. Comp. Physiol. 95: 185.

    Google Scholar 

  179. Goodman, C. S., 1978, Isogenic grasshoppers: Genetic variability in the morphology of identified neurons, J. Comp. Neurol. 182: 681.

    Google Scholar 

  180. Macagno, E. R., 1980, Genetic approaches to invertebrate neurogenesis, Curr. Top. Dev. Biol. 15: 319.

    Google Scholar 

  181. Pitman, R. M., Tweedle, C. D., and Cohen, M. J., 1973, The form of nerve cells: Determination by cobalt impregnation, in: Intracellular Staining in Neurobiology ( S. B. Kater and C. Nicholson, eds.), pp. 83–98, Springer-Verlag, New York.

    Google Scholar 

  182. Stretton, A. O. W., and Kravitz, E. A., 1973 Intracellular dye injection: The selection of procion yellow and its application in preliminary studies of neuronal geometry in the lobster nervous system, in: Intracellular Staining in Neurobiology ( S. B. Kater and C. Nicholson, eds.), pp. 21–40, Springer-Verlag, New York.

    Google Scholar 

  183. Ready, D. F., and Nicholls, J., 1979, Identified neurons isolated from leech CNS make selective connections in culture, Nature (London) 281: 67.

    Google Scholar 

  184. Ready, D. F., and Nicholls, J., 1979, Identified neurons isolated from leech CNS make selective connections in culture, Nature (London) 281: 67.

    Google Scholar 

  185. Goodman, C. S., Pearson, K. G., and Spitzer, N. C., 1980, Electrical excitability: A spectrum of properties in the progeny of a single embryonic neuroblast, Proc. Natl. Acad. Sci. U.S.A. 77: 1676.

    Google Scholar 

  186. Spiegelman, B. M., Lopata, M. A., and Kirschner, M. W., 1979, Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells, Cell 16: 253.

    Google Scholar 

  187. Solomon, F., 1979, Detailed neurite morphologies of sister neuroblastoma cells are related, Cell 15: 165.

    Google Scholar 

  188. Hibbard, E., 1965, Orientation and directed growth of Mauthner’s cell axons from duplicated vestibular nerve roots, Exp. Neurol. 13: 289.

    Google Scholar 

  189. Van der Loos, H., 1965, The “improperly” oriented pyramidal cell in the cerebral cortex and its possible bearing on problems of growth and cell orientation, Bull. Johns Hopkins Hosp. 117: 228.

    Google Scholar 

  190. Luduena, M. A., 1973, Nerve cell differentiation in vitro, Dev. Biol. 33: 268.

    Google Scholar 

  191. Elsdale, T., and Bard, J., 1972, Collagen substrata for studies in cell behavior, J. Cell Biol. 54: 626.

    Google Scholar 

  192. Derby, M. A., 1978, Analysis of glycosaminoglycans within the extracellular environments encountered by migrating neural crest cells, Dev. Biol. 66: 321.

    Google Scholar 

  193. Polansky, J. R., Toole, B. P., and Gross, J., 1974, Brain hyaluronidase: Changes in activity during chick development, Science 193: 862.

    Google Scholar 

  194. LeDouarin, N., 1980, The ontogeny of the neural crest in avian embryo chimaeras, Nature (London) 286: 663.

    Google Scholar 

  195. Nichols, D. H., Kaplan, R. A., and Weston, J. A., 1977, Melanogenesis in cultures of peripheral nerve tissue. II. Environmental factors determining the fate of pigment-forming cells, Dev. Biol. 60: 226.

    Google Scholar 

  196. Hill, C. E., Chamley, J. H., and Burnstock, G., 1974, Cell surfaces and fiber relationships in sympathetic ganglion cultures: A scanning electron-microscopic study, J. Cell Sci. 14: 657.

    Google Scholar 

  197. Kalderon, N., 1979, Migration of Schwann cells and wrapping of neurites in vitro: A function of protease activity (plasmin) in the growth medium, Proc. Natl. Acad. Sci. U.S.A. 76: 5992.

    Google Scholar 

  198. Helfand, S. L., Riopelle, R. J., and Wessells, N. K., 1978, Non-equivalence of conditioned medium and nerve growth factor for sympathetic, parasympathetic, and sensory neurons, Exp. Cell Res. 113: 39.

    Google Scholar 

  199. Couglin, M. D., Bloom, E. M., and Black, I. B., 1981, Characterization of a neuronal growth factor from mouse heart-cell conditioned medium, Dev. Biol. 82: 56.

    Google Scholar 

  200. Wood, P. M., 1976, Separation of functional Schwann cells and neurons from normal peripheral nerve tissue, Brain Res. 115: 361.

    Google Scholar 

  201. Sutter, A., Riopelle, R. J., Harris-Warrick, R. M., and Shooter, E. M., 1979, Nerve growth factor receptors, J. Biol. Chem. 254: 5972.

    Google Scholar 

  202. Dvorak, D. J., Gipps, E., and Kidson, C., 1978, Isolation of specific neurons by affinity methods, Nature (London) 271: 564.

    Google Scholar 

  203. Okun, L. M., Ontkean, F. K., and Thomas, C. A., 1972, Removal of non-neuronal cells from suspensions of dissociated embryonic dorsal root ganglia, Exp. Cell Res. 73: 226.

    Google Scholar 

  204. Sotelo, S., Gibbs, C. J., Gajdusek, D. G., Toh, B. H., and Wurth, M., 1980, Method for preparing cultures of central neurons: Cytochemical and immunochemical studies, Proc. Natl. Acad. Sci. U.S.A. 77: 653.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Letourneau, P.C. (1982). Nerve Fiber Growth and Its Regulation by Extrinsic Factors. In: Spitzer, N.C. (eds) Neuronal Development. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1131-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1131-7_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1133-1

  • Online ISBN: 978-1-4684-1131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics