Skip to main content

Cell Lineage in the Development of the Leech Nervous System

  • Chapter
Neuronal Development

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

The intricate structure and function of the adult nervous system is the result of developmental interactions of factors both intrinsic and extrinsic to the embryonic neurons and their precursor cells. To fathom the mechanisms underlying these interactive processes, a detailed knowledge of the course of neurogenesis at the cellular level is essential. Once such knowledge is available, specific and well-focused questions can be formulated at the biophysical, biochemical, or genetic levels. One key aspect of the process of neurogenesis at the cellular level is cell lineage, i.e., the embryonic lines of descent of various types of neurons. The importance of cell lineage for understanding developmental processes was realized over a century ago by C. O. Whitman.1 On the basis of his studies of the development of leeches, Whitman put forward the idea, then quite novel, that each identified cell of the early embryo, and the clone of its descendant cells, plays a specific role in later development. Cell lineage analyses were later extended to the embryos of other species, not only by direct observation but also by use of other techniques, such as selective ablation, application of extracellular marker particles, and, most importantly, production of chimera and genetic mosaics.2–10 More recently, we have refined and extended Whitman’s century-old cell lineage studies in leech embryos, with particular emphasis on the cellular origins of the leech nervous system. As will be seen in this chapter, leeches are well suited for cellular investigations of neuronal development because both their early embryos and their adult nervous systems comprise identifiable cells accessible to experimental manipulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Whitman, C. O., 1878, The embryology of Clepsine, Q. J. Micros. Sci. 18: 215.

    Google Scholar 

  2. Wilson, E. B., 1892, The cell lineage of Nereis, J. Morphol. 6: 361.

    Article  Google Scholar 

  3. Sturtevant, A. H., 1929, The claret mutant type of Drosophila simulans: A study of chromosome elimination and cell lineage, Z. Wiss. Zool. Abt. A 135: 325.

    Google Scholar 

  4. Tarkowski, A. K., 1961, Mouse chimera developed from fused eggs, Nature (London) 190: 857.

    Article  Google Scholar 

  5. Mintz, B., 1965, Genetic mosaicism in adult mice of quadriparental lineage, Science 148: 1232.

    Article  Google Scholar 

  6. Stern, C., 1968, Genetic Mosaics and Other Essays, Harvard University Press, Cambridge, MA.

    Google Scholar 

  7. Garcia-Bellido, A., and Merriam, J. R., 1969, Cell lineage of the imaginal discs in Drosophila gynandromorphs, J. Exp. Zool. 170: 61.

    Article  Google Scholar 

  8. Le Douarin, N., 1973, A biological cell labeling technique and its use in experimental embryology, Dey. Biol. 30: 217.

    Article  Google Scholar 

  9. Sulston, J. E., and Horvitz, H. R., 1977, Post-embryonic lineages of the nematode Caenorhabditis elegans, Dey. Biol. 56: 110.

    Article  Google Scholar 

  10. Deppe, V., Schierenberg, E., Cole, T., Krieg, C., Schmitt, D., Yoder, B., and von Ehrenstein, G., 1978, Cell lineages of the embryo of the nematode Caenorhabditis elegans, Proc. Natl. Acad. Sci. U.S.A. 75: 376.

    Article  Google Scholar 

  11. Nicholls, J. G., and Van Essen, D., 1974, The nervous system of the leech, Sci. Am. 230: 38.

    Article  Google Scholar 

  12. Schleip, W., 1936, Ontogenie der Hirudineen, in: Klassen und Ordnungen des Tierreichs, vol. 4, div. III, book 4, (H. G. Bronn, ed.), Part 2, pp. 1–121, Akad. Verlagsgesellschaft, Leipzig.

    Google Scholar 

  13. Fernandez, J. 1980. Embryonic development of the glossiphoniid leech Theromyzon rude: Characterization of developmental stages, Dey. Biol. 76: 245.

    Article  Google Scholar 

  14. Weisblat, D. A., Harper, G., Stent, G. S., and Sawyer, R. T., 1980, Embryonic cell lineages in the nervous system of the glossiphoniid leech Helobdella triserialis, Dey. Biol. 76: 58.

    Article  Google Scholar 

  15. Fernandez, J., and Stent, G. S., 1980, Embryonic development of the glossiphoniid leech Theromyzon rude: Structure and development of the germinal bands, Dey. Biol. 78: 407.

    Article  Google Scholar 

  16. Kramer, A. P., and Goldman, J. R., 1981, The nervous system of the glossiphoniid leech, Haeinenteria ghilianii. I. Identification of neurons, J. Comp. Physiol. 144: 435.

    Article  Google Scholar 

  17. Kramer, A. P., 1981, The nervous system of the glossiphoniid leech Haementeria ghilianii. II. Synaptic pathways controlling body wall shortening. J. Comp. Physiol. 144: 449.

    Article  Google Scholar 

  18. Mann, K. H., 1962, Leeches (Hirudinea). Pergamon, Oxford.

    Google Scholar 

  19. Macagno, E. R., 1980, The number and distribution of neurons in leech segmental ganglia, J. Comp. Neurol. 190: 283.

    Article  Google Scholar 

  20. Coggeshall, R. E., and Fawcett, D. W., 1964, The fine structure of the central nervous system of the leech, Hirudo medicinalis, J. Neurophysiol. 27: 229.

    Google Scholar 

  21. Stuart, A. E., 1970, Physiological and morphological properties of motoneurones in the central nervous system of the leech, J Physiol. 209: 627.

    Google Scholar 

  22. Nicholls, J. G., and Baylor, D. A., 1968, Specific modalities and receptive fields of sensory neurons in CNS of the leech, J. Neurophysiol 31: 740.

    Google Scholar 

  23. Nicholls, J. G., and Purves, D., 1972, A comparison of chemical and electrical synaptic transmission between single sensory cells and a motorneuron in the central nervous system of the leech, J. Physiol. (London) 225: 637.

    Google Scholar 

  24. Lent, C. M., 1973, Retzius cells: Neuronal effectors controlling mucus release by the leech, Science 179: 693.

    Article  Google Scholar 

  25. Muller, K. J., 1979, Synapses between neurones in the central nervous system of the leech, Biol. Rev. 54: 99.

    Article  Google Scholar 

  26. Kretz, J. R., Stent, G. S., and Kristan, W. B., Jr., 1976, Photosensory input pathways in the medicinal leech, J. Comp. Physiol. 106: 1.

    Article  Google Scholar 

  27. Nicholls, J. G., and Purves, D., 1970, Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech, J. Physiol. 209: 647.

    Google Scholar 

  28. Stent, G. S., Thompson, W. J., and Calabrese, R. L., 1979, Neural control of heartbeat in the leech and in some other invertebrates, Physiol. Rev. 59: 101.

    Google Scholar 

  29. Stent, G. S., Kristan, W. B., Jr., Friesen, W. O., Ort, C. A., Poon, M., and Calabrese, R. L., 1978, Neuronal generation of the leech swimming movement, Science 200: 1348.

    Article  Google Scholar 

  30. Sawyer, R. T., Kramer, A. P., Stuart, D. K., and Weisblat, D. A., in preparation.

    Google Scholar 

  31. Anderson, D. T., 1973, Embryology and Phylogeny in Annelids and Arthropods, Pergamon, Oxford.

    Google Scholar 

  32. Mueller, K. J., 1932, Ueber normale Entwicklung, inverse Asymmetrie and Doppelbildungen bei Clepsine sexoculata, Z. Wiss. Zool. Abt. A 142: 425.

    Google Scholar 

  33. Weisblat, D. A., Sawyer, R. T., Stent, G. S., 1978, Cell lineage analysis by intracellular injection of tracer, Science 202: 1295.

    Article  Google Scholar 

  34. Weisblat, D. A., Zackson, S. L., Blair, S. S., and Young, J. D., 1980, Cell lineage analysis by intracellular injection of fluorescent tracers, Science 209: 1538.

    Article  Google Scholar 

  35. Muller, K. J., and McMahan, U. J., 1975, The arrangement and structure of synapses formed by specific sensory and motor neurons in segmental ganglia of the leech, Anat. Rec., 181: 432.

    Google Scholar 

  36. Stewart, W. W., 1978, Junctional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer, Cell 14: 741.

    Article  Google Scholar 

  37. Simpson, I., Rose, B., and Lowenstein, W. R., 1977, Size limit of molecules permeating junctional membrane channels, Science 195: 294.

    Article  Google Scholar 

  38. Stewart, J. M., and Young, J. D., 1969, Solid Phase Peptide Synthesis, W. H. Freeman, San Francisco.

    Google Scholar 

  39. Nairn, R. C., 1969, Fluorescent Protein Tracing, Williams and Wilkins, Baltimore, MD.

    Google Scholar 

  40. Sedat, S., and Manuelides, M., 1977, A direct approach to the structure of eukaryotic chromosomes, Cold Spring Harbor Symp. Quant. Biol. 42: 331.

    Article  Google Scholar 

  41. Whitman, C. O., 1887, A contribution to the history of germ layers in Clepsine, J. Morphol. 1: 105.

    Article  Google Scholar 

  42. Bergh, R. S., 1891, Neue Beitraege zur Embryologie der Anneliden, II. Die Schichtenbildung im Keimstreifen der Hirudineen, Z. Wiss. Zool. Abt. A 52: 1.

    Google Scholar 

  43. Mori, Y., 1932, Entwicklung isolierter Blastomeren and teilweise abgetoeteter aelterer Keime von Clepine sexoculata, Z. Wiss. Zool. Abt. A 141: 399.

    Google Scholar 

  44. Mannherz, H. G., Barrington-Leigh, J., Leberman, R., and Pfrang, H., 1975, A specific 1:1 G-actin:DNase I complex formed by the action of DNase I on F-actin, FEBS Lett. 60: 34.

    Article  Google Scholar 

  45. Hitchcock, S. E., Carlsson, L., and Lindberg, U., 1976, Depolymerization of F-actin by deoxyribonuclease I, Cell 7: 531.

    Article  Google Scholar 

  46. Parnas, I., and Bowling, D., 1977, Killing of single neurones by intracellular injection of proteolytic enzymes, Nature (London) 270: 626.

    Article  Google Scholar 

  47. Penners, A., 1934, Experimentelle Untersuchungen zum Determinationsproblem am Keim von Tubifex rivulorum Lam. III. Abtoetung der Teloblasten auf verschiedenen Entwicklungsstadien des Keimstreifs, Z. Wiss. Zool. Abt. A 127: 1.

    Google Scholar 

  48. Devriès, J., 1969, Le développement des embryons d’Eisenia foetida après la destruction unilatérale des mesotéloblastes, Bull. Soc. Zool. France 94: 663.

    Google Scholar 

  49. Devriès, J., 1974a, Le mesoderme, feuillet directeur de l’embryogenèse chez le lombricien Eisenia foetida. II. La différenciation du tube digestif et des dérivés ectodermiques, Acta Embryol. Exp. 2: 156.

    Google Scholar 

  50. Devriès, J., 1974b, Le mesoderme, feuillet directeur de l’embryogenèse chez le lombricien Eisenia foetida. III. La détermination des ectotéloblastes, Acta Embryol. Exp. 2: 181.

    Google Scholar 

  51. Blair, S. S., 1982, Interactions between mesoderm and ectoderm in segment formation in the embryo of a glossiphoniid leech, Dew. Biol.,in press.

    Google Scholar 

  52. Blair, S. S., and Weisblat, D. A., 1982, Ectodermal interactions during neurogenesis in the glossiphoniid leech Helobdella triserialis, Dew. Biol.,in press.

    Google Scholar 

  53. Ort, C. A., Kristan, W. B., and Stent, G. S., 1974, Neuronal control of swimming in the medicinal leech. II. Identification and connections of motor neurons, J. Comp. Physiol. 94: 121.

    Article  Google Scholar 

  54. Goodman, C. S., and Spitzer, N. C., 1979, Embryonic development of identified neurones: Differentiation from neuroblast to neurone, Nature (London) 280: 208.

    Article  Google Scholar 

  55. Crick, F. H. C., and Lawrence, P. A., 1975, Compartments and polyclones in insect development, Science 189: 340.

    Article  Google Scholar 

  56. Turing, A. M., 1952, The chemical basis of morphogenesis, Philos. Trans. R. Soc. London Ser. B 237: 37.

    Article  Google Scholar 

  57. Maynard-Smith, J., 1960, Continuous, quantized and modal variation, Proc. R. Soc. Ser. B152: 397.

    Article  Google Scholar 

  58. Tazima, Y., 1964, The Genetics of the Silkworm, Logos Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Stent, G.S., Weisblat, D.A., Blair, S.S., Zackson, S.L. (1982). Cell Lineage in the Development of the Leech Nervous System. In: Spitzer, N.C. (eds) Neuronal Development. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1131-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1131-7_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1133-1

  • Online ISBN: 978-1-4684-1131-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics