Skip to main content

Collective Ion Acceleration with Linear Intense Relativistic Electron Beams

  • Chapter
An Introduction to the Physics of Intense Charged Particle Beams
  • 376 Accesses

Abstract

Because of technological limitations on rf power sources and dielectric breakdown strength, the accelerating fields in conventional particle accelerators are generally restricted to 104−105 V/cm. As a result, acceleration concepts which employ the very large self-fields of an intense relativistic electron beam have received considerable attention in recent years. In these new schemes, the accelerating fields are not imposed externally, but arise from the collective action of a larger number of particles (electrons) on a smaller number of particles (positive ions). Since the accelerating fields are not limited by electrical breakdown, collective methods may eventually lead to the compact, economical acceleration of intense currents of light or heavy ions to hundreds of MeV per nucleon. Potential areas of application of such beams include controlled thermonuclear research, electronuclear breeding, basic nuclear physics, material studies, and radiation therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Veksler, “Coherent Principle of Acceleration of Charged Particles,” Proceedings of the CERN Symposium on High Energy Acceleration and Ion Physics, Vol. I, Geneva (1956).

    Google Scholar 

  2. V. I. Veksler, Proceedings of the Sixth International Conference on High Energy Accelerators (1967).

    Google Scholar 

  3. L. J. Laslett, IEEE Trans. Nucl. Sci. NS-20, 271 (1973).

    Google Scholar 

  4. D. Keefe, Proc. IVth All-Union Conf. on Particle Accelerators (Nov. 1974), Nauka, Moscow, Vol. I, p. 109 (1975).

    Google Scholar 

  5. M. Reiser, IEEE Trans. Nucl. Sci. NS-20, 310 (1973).

    Google Scholar 

  6. U. Schumacher, C. Andelfinger, M. Ulrich, IEEE Trans. Nucl. Sci. NS-22, 989 (1975).

    Google Scholar 

  7. I. N. Ivanov and V. P. Sarantsev, Proceedings of the First International School of Young Physicists on the Problems of Charged Particle Accelerators, Uzhgohod (Sept. 4–15, 1975 ), JINR, Dubna (1976).

    Google Scholar 

  8. D. Keefe, “Particle Acceleration by Collective Effects,” 1976 Proton Linear Accelerator Conference, Chalk River, Ontario, Canada, LBL-5536 (September 14–17, 1976 ).

    Google Scholar 

  9. A. A. Plyutto, Sov. Phys. JETP 12, 1106 (1961).

    Google Scholar 

  10. A. A. Plyutto, P. E. Belensov, E. D. Korop, G. P. Mkheidze, V. N. Ryzhnov, K. V. Suladze, and S. M. Temchin, JETP Lett. 6, 61 (1967).

    ADS  Google Scholar 

  11. A. A. Plyutto, K. V. Suladze, S. M. Temchin, and E. D. Korop, Soy. J. At. Energy 27, 1197 (1969).

    Article  Google Scholar 

  12. J. P. Mkheidze, A. A. Plyutto, and E. D. Korop, Soy. Phys. Tech. Phys. 16, 749 (1971).

    Google Scholar 

  13. A. A. Plyutto, K. V. Suladze, S. M. Temchin, G. P. Mkheidze, E. D. Korop, B. A. Tskhadaya, and I. V. Golovia, Soy. Phys. Tech. Phys. 18, 1026 (1974).

    Google Scholar 

  14. A. A. Plyutto, Sukhumi Institute of Physics and Technology, SFTI-1 (1977).

    Google Scholar 

  15. M. S. Rabinovich, “Collective Methods of Acceleration,” Reprint No. 36, Lebedev Physical Institute (March, 1969 ).

    Google Scholar 

  16. S. Graybill and J. Uglum, J. Appl. Phys. 41, 236 (1970).

    Article  ADS  Google Scholar 

  17. S. Graybill, IEEE Trans. Nucl. Sci. NS-18, 438 (1971).

    Google Scholar 

  18. S. Graybill, IEEE Trans. Nucl. Sci. NS-19, 292 (1972).

    Google Scholar 

  19. J. Rander, B. Ecker, G. Yonas, and D. Drickey, Phys. Rev. Lett. 24, 283 (1970).

    Article  ADS  Google Scholar 

  20. J. Rander, Phys. Rev. Lett. 25, 893 (1970).

    Article  Google Scholar 

  21. G. W. Kuswa, L. P. Bradley, and G. Yonas, IEEE Trans. Nucl. Sci. NS-20, 305 (1973).

    Google Scholar 

  22. B. Ecker and S. Putnam, IEEE Trans. Nucl. Sci. NS-20, 301 (1973).

    Google Scholar 

  23. D. C. Straw and R. B. Miller, Appl. Phys. Lett. 25, 379 (1974).

    Article  ADS  Google Scholar 

  24. R. B. Miller and D. C. Straw, J. Appl. Phys. 47, 1897 (1976).

    Article  ADS  Google Scholar 

  25. A. A. Kolomensky, Proc. Ninth Int’l. Accel. Conf. High Energy Accel., SLAC, p. 254 (1974).

    Google Scholar 

  26. A. A. Kolomensky et al., Sou. Phys. JETP 41, 26 (1975).

    ADS  Google Scholar 

  27. S. Graybill and F. Young, APS Div. Plasma Physics Mtg., San Francisco (November 15–19, 1976 ).

    Google Scholar 

  28. J. S. Luce and H. L. Sahlin, IEEE Trans. Nucl. Sci. NS-20, 336 (1973).

    Google Scholar 

  29. L. P. Bradley and G. W. Kuswa, Phys. Rev. Lett. 29, 1441 (1972).

    Article  ADS  Google Scholar 

  30. G. T. Zorn, H. Kim, and C. N. Boyer, IEEE Trans. Nucl. Sci. NS-22, 1006 (1975).

    Google Scholar 

  31. R. F. Hoeberling and D. N. Payton, III, J. Appl. Phys. 48, 2079 (1977).

    Article  ADS  Google Scholar 

  32. J. L. Adamski, P. S. P. Wei, J. R. Beymer, R. L. Gray, and R. L. Copeland, Proc. 2nd Intl. Top. Conf. High Power Electron and Ion Beam Res. and Technol., Ithaca, New York, 497 (1977).

    Google Scholar 

  33. R. J. Adler, J. A. Nation, and V. Serlin, to be published.

    Google Scholar 

  34. R. B. Miller and D. C. Straw, IEEE Trans. Nucl. Sci. NS-22, 1022 (1975).

    Google Scholar 

  35. J. S. Luce, W. H. Bostick, and V. Nardi, Proc. Conf. on Plasma Heating, Verona, Italy (1976).

    Google Scholar 

  36. W. W. Destler, R. F. Hoeberling, H. Kim, and W. H. Bostick, Appl. Phys. Lett. 35, 296 (1979).

    Article  ADS  Google Scholar 

  37. M. L. Sloan and W. E. Drummond, Phys. Rev. Lett. 31, 1234 (1974).

    Article  ADS  Google Scholar 

  38. P. Sprangle, A. T. Drobot, and W. M. Manheimer, Phys. Rev. Lett. 36, 1180 (1976).

    Article  ADS  Google Scholar 

  39. S. V. Yadavalli, Appl. Phys. Lett. 29, 272 (1976).

    Google Scholar 

  40. G. Yonas, Part. Accel. 5, 81 (1973).

    Google Scholar 

  41. C. L. Olson, Part. Accel. 6, 107 (1975).

    Google Scholar 

  42. C. L. Olson and U. Schumacher, Springer Tracts in Modern Physics: Collective Ion Acceleration, Vol. 84, G. Hohler, ed., Springer, New York (1979).

    Google Scholar 

  43. C. L. Olson, Phys. Fluids 18, 585 (1975).

    Article  ADS  Google Scholar 

  44. C. L. Olson, Phys. Fluids 18, 598 (1975).

    Article  ADS  Google Scholar 

  45. C. L. Olson, Phys. Rev. A 11, 288 (1975).

    Article  ADS  Google Scholar 

  46. R. B. Miller and D. C. Straw, Proc. Intl. Top. Conf. E-Beam Res. and Technol., Albuquerque, New Mexico, Vol. 2, p. 368 (1976).

    Google Scholar 

  47. B. Ecker and S. Putnam, Symp. Coll. Methods of Accel., Dubna, ( October, 1976 ).

    Google Scholar 

  48. S. E. Graybill, J. R. Uglum, W. H. McNeill, J. E. Rizzo, R. Lowell, and G. Ames, Ion Physics Corporation Report No. DASA 2477 (1970).

    Google Scholar 

  49. G. W. Kuswa, Ann. N.Y. Acad. Sci. 251, 514 (1975).

    ADS  Google Scholar 

  50. R. J. Faehl, in Report No. LA-7734-PR, Los Alamos Scientific Laboratory, p. 100 (1979).

    Google Scholar 

  51. B. B. Godfrey and L. E. Thode, IEEE Trans. Plasma Sci. PS-3, 201 (1975).

    Google Scholar 

  52. L. E. Floyd, W. W. Destler, M. Reiser, and H. M. Shiu, J. Appl. Phys. 52, 693 (1981).

    Article  ADS  Google Scholar 

  53. C. L. Olson, Proc. IX Int’l. Conf. High Energy Accelerators, Stanford Linear Accelerator Center p. 272 (1974).

    Google Scholar 

  54. R. B. Miller, IEEE Proc. Int’l Conf. Plasma Science, p. 130 (March 24–26, 1976 ).

    Google Scholar 

  55. C. L. Olson, J. W. Poukey, J. P. Van Devender, and J. S. Perlman, IEEE Trans. Nucl. Sci. NS-24, 1659 (1977).

    Google Scholar 

  56. V. N. Tsytovich and K. V. Khodataev, Comments Plasma Phys. Controlled Fusion 3, 71 (1977).

    Google Scholar 

  57. S. Putman, Symp. Collective Methods Accel., Dubna, ( October, 1976 ).

    Google Scholar 

  58. R. J. Adler, J. Appl. Phys. 52, 3099 (1981).

    Article  ADS  Google Scholar 

  59. C. L. Olson, IEEE Trans. Nucl. Sci. NS-26, 4231 (1979).

    Google Scholar 

  60. C. L. Olson, IEEE Particle Accel Conf., Wash. D.C. (March 1981).

    Google Scholar 

  61. W. E. Drummond, G. I. Bourianoff, D. E. Hasti, W. W. Rienstra, M. L. Sloan, and J. R. Thomson, Air Force Weapons Laboratory Report No. AFWL-TR-74–343 (1974).

    Google Scholar 

  62. W. W. Rienstra, Air Force Weapons Laboratory Report No. AFWL-TR-74–343 (1974), Appendix A.

    Google Scholar 

  63. W. A. Proctor and T. C. Genoni, J. Appl. Phys. 49, 910 (1978).

    Article  ADS  Google Scholar 

  64. B. B. Godfrey and B. S. Newberger, J. Appl. Phys. 50, 2470 (1979).

    Article  ADS  Google Scholar 

  65. B. B. Godfrey, IEEE Trans. Plasma Sci. PS-7, 53 (1979).

    Google Scholar 

  66. W. E. Drummond et al., Austin Research Associates Report No. I-ARA-79-U-72 (1979).

    Google Scholar 

  67. M. L. Sloan, E. P. Cornet, W. W. Rienstra, J. R. Thomson, and H. V. Wong, 3rd Intl. Conf. Collective Methods of Acceleration, N. Rostoker and M. Reiser, eds., p. 145 (1978).

    Google Scholar 

  68. G. I. Bourianoff, B. N. Moore, and B. R. Penumalli, 3rd Intl. Conf. Collective Methods of Acceleration, N. Rostoker and M. Reiser, eds., p. 191 (1978).

    Google Scholar 

  69. R. J. Faehl, W. R. Shanahan, and B. B. Godfrey, 3rd Intl. Conf. Collective Methods of Acceleration, N. Rostoker and M. Reiser, eds., p. 211 (1978).

    Google Scholar 

  70. H. A. Davis and E. Cornet, Rev. Sci. Instrum. 51, 1176 (1980).

    Article  ADS  Google Scholar 

  71. E. Cornet, H. A. Davis, W. W. Rienstra, M. L. Sloan, T. P. Starke, and J. R. Uglum, to be published in Physical Review Letters.

    Google Scholar 

  72. R. J. Briggs, Phys. Fluids 19, 1257 (1976).

    Article  ADS  Google Scholar 

  73. B. B. Godfrey, IEEE Plasma Sci. PS-6, 380 (1976).

    Google Scholar 

  74. P. Sprangle and A. T. Drobot, NRL Memo Report No. 3660 (1980).

    Google Scholar 

  75. D. Sullivan, private communication.

    Google Scholar 

  76. G. Gamel, J. A. Nation, and M. E. Read, Rev. Sci. Instrum. 49, 507 (1978).

    Article  ADS  Google Scholar 

  77. R. Adler, G. Gamel, J. A. Nation, M. E. Read, R. Williams, P. Sprangle, and A. Drobot, Proc. 2nd Intl. Conf. High Power Electron and Ion Beam Res. and Technol., Vol. II, p. 509 (1977).

    Google Scholar 

  78. R. Adler, G. Gamel, J. A. Nation, G. Providakes, and R. Williams, Proc. 3rd Int. Conf. Collective Methods of Acceleration (1978).

    Google Scholar 

  79. R. Adler, G. Gamel, J. A. Nation, J. Ivers, G. Providakes, and V. Serlin, IEEE Trans. Nucl. Sci. NS-26, 4223 (1979).

    Google Scholar 

  80. G. Gamel, J. A. Nation, and M. Read, J. Appl. Phys. 50, 5603 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Miller, R.B. (1982). Collective Ion Acceleration with Linear Intense Relativistic Electron Beams. In: An Introduction to the Physics of Intense Charged Particle Beams. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1128-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1128-7_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1130-0

  • Online ISBN: 978-1-4684-1128-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics