Skip to main content

Abstract

When an intense charged particle beam is injected into a dense plasma, the beam space charge can be effectively neutralized by a redistribution of the plasma particles. For example, during injection of an intense electron beam, plasma electrons will move out of the beam region during the characteristic time (4πσ)−1, which is typically quite short («10−9 sec). Hence, net space charge effects (e.g., radial expansion or virtual cathode formation) do not pose serious limitations to beam transport in a plasma. Another general limitation arises, however, from the constriction of the beam due to its azimuthal self-magnetic field. In the original analyses,1 an upper limit for current propagation was derived as

$$ {{I}_{A}}\simeq {\beta \gamma m{{c}^{3}}}/{e}\; $$
(4.1)

where, as usual, β is the particle stream velocity divided by the velocity of light and γ=(1−β 2)−1/2. I A, the Alfven current limit, physically corresponds to the situation in which the beam self-magnetic field is sufficient to reverse the direction of the electron trajectories at the outer edge of the beam. In principle, this limitation can be avoided if the induced emf associated with the rising beam current is sufficient to drive a plasma current directed opposite to the beam current. Depending upon the plasma conductivity, the induction electric field can effectively cause the net current, and hence the magnetic field in the system, to vanish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Alfven, Phys. Rev. 55, 425 (1939).

    Article  ADS  MATH  Google Scholar 

  2. D. A. Hammer and N. Rostoker, Phys. Fluids 13, 1831 (1970).

    Article  ADS  Google Scholar 

  3. A. A. Rukhadze and V. G. Rukhlin, Sou. Phys. JETP 34, 93 (1972).

    ADS  Google Scholar 

  4. J. L. Cox and W. H. Bennett, Phys. Fluids 13, 182 (1970).

    Article  ADS  Google Scholar 

  5. S. Putnam, Physics International ReportNo. DNA 2849F (PIFR-72–105) (July, 1972 ).

    Google Scholar 

  6. D. S. Prono and E. P. Lee, Plasma Phys. 15, 691 (1973).

    Article  ADS  Google Scholar 

  7. S. E. Rosinskii, A. A. Rukhadze, V. G. Rukhlin, and Ya. G. Epel’baum, Sou. Phys. Tech. Phys. 17, 737 (1972).

    Google Scholar 

  8. R. Lee and R. N. Sudan, Phys. Fluids 14, 1213 (1971).

    Article  ADS  Google Scholar 

  9. S. E. Rosinskii and V. G. Rukhlin, Sou. Phys. JETP 37, 436 (1973).

    ADS  Google Scholar 

  10. W. H. Bennett, Phys. Rev. 45, 890 (1934).

    Article  ADS  Google Scholar 

  11. W. H. Bennett, Phys. Rev. 98, 1584 (1955).

    Article  ADS  MATH  Google Scholar 

  12. G. Kuppers, A. Salat, and H. K. Wimmel, Plasma Phys. 15, 441 (1973).

    Article  ADS  Google Scholar 

  13. J. L. Cox, Jr., and W. H. Bennett, Phys. Fluids 13, 182 (1970).

    Article  ADS  Google Scholar 

  14. J. Benford and B. Ecker, Phys. Rev. Lett. 26, 1160 (1971).

    Article  ADS  Google Scholar 

  15. J. Benford and B. Ecker, Phys. Rev. Lett. 28, 10 (1972).

    Article  ADS  Google Scholar 

  16. P. A. Miller, R. I. Butler, M. Cowan, J. R. Freeman, J. W. Poukey, T. P. Wright, and G. Yonas, Phys. Rev. Lett. 39, 92 (1977).

    Article  ADS  Google Scholar 

  17. V. P. Grigorev, A. N. Didenko, and N. S. Shulaev, Son. Phys. Tech. Phys. 23, 747 (1978).

    Google Scholar 

  18. S. V. Yadavalli, Z. Phys. 196, 255 (1966).

    Article  ADS  Google Scholar 

  19. M. N. Rosenbluth, Phys. Fluids 3, 932 (1960).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. S. Weinberg, J. Math Phys. 5, 1371 (1964).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. S. Weinberg, J. Math Phys. 8, 614 (1967).

    Article  ADS  Google Scholar 

  22. E. P. Lee, Phys. Fluids 16, 1072 (1973).

    Article  ADS  Google Scholar 

  23. E. P. Lee, Lawrence Livermore Lab. Report No. UCID-16268 (May, 1973 ).

    Google Scholar 

  24. R. C. Mjolsness, J. Enoch, and C. L. Longmire, Phys. Fluids 6, 1741 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  25. K. G. Moses, R. W. Bauer, and S. R. Winter, Phys. Fluids 16, 436 (1973).

    Article  ADS  Google Scholar 

  26. E. J. Lauer, R. J. Briggs, T. J. Fessenden, R. E. Hester, and E. P. Lee, Phys. Fluids 21, 1344 (1978).

    Article  ADS  Google Scholar 

  27. E. P. Lee, Phys. Fluids 21, 1327 (1978).

    Article  ADS  Google Scholar 

  28. H. S. Uhm and M. Lampe, NRL Memo Report No. 4111 (November 1979).

    Google Scholar 

  29. L. S. Bogdankevich and A. A. Rukhadze, Sov. Phys. Usp. 14, 163 (1971).

    Article  ADS  Google Scholar 

  30. O. Buneman, Phys. Rev. 115, 503 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. L. S. Bogdankevich and A. A. Rukhadze, Soo. Phys. JETP 35, 126 (1972).

    ADS  Google Scholar 

  32. B. B. Godfrey, W. R. Shanahan, and L. E. Thode, Phys. Fluids 18, 346 (1975).

    Article  ADS  Google Scholar 

  33. E. S. Weibel, Phys. Rev. Lett. 31, 1390 (1973).

    Article  Google Scholar 

  34. R. Lee and M. Lampe, Phys. Rev. Lett. 31, 1390 (1973).

    Article  ADS  Google Scholar 

  35. C. A. Kapetanakos, Appl. Phys. Len. 25, 484 (1974).

    Google Scholar 

  36. K. F. Lee and J. C. Armstrong, Phys. Rev. A 4, 2087 (1971).

    Article  ADS  Google Scholar 

  37. G. Benford, Plasma Phys. 15, 483 (1973).

    Article  ADS  Google Scholar 

  38. K. Molvig, Phys. Rev. Lett. 35, 1504 (1975).

    Article  Google Scholar 

  39. L. E. Thode and R. N. Sudan, Phys. Fluids 18, 1564 (1975).

    Article  ADS  Google Scholar 

  40. E. K. Zavoisky, B. A. Demidov, Yu. G. Kalinin, A. G. Plakhov, L. I. Rudakov, V. E. Rusanov, V. A. Skoryupin, G. Ye. Smolkin, A. V. Titov, S. D. Franchenko, V. V. Shapkin, and G. V. Sholin, Plasma Physics andControlled Fusion Research 1971, Vol. 2, p. 3 (1971).

    Google Scholar 

  41. R. V. Lovelace and R. N. Sudan, Phys. Rev. Leu. 27, 1256 (1971).

    Article  ADS  Google Scholar 

  42. W. E. Drummond, J. R. Thompson, G. I. Bourianoff, D. E. Hasti, M. L. Sloan, and H. V. Wong, Austin Research Assoc, Report No. I-ARA-75-U-139 (August, 1975 ).

    Google Scholar 

  43. L. E. Thode, Phys. Fluids 19, 305 (1976).

    Article  ADS  Google Scholar 

  44. L. E. Thode and R. N. Sudan, Phys. Fluids 18, 1552 (1975).

    Article  ADS  Google Scholar 

  45. L. E. Thode and B. B. Godfrey, Phys. Fluids 19, 316 (1976).

    Article  ADS  Google Scholar 

  46. A. T. Altynstev, A. G. Es’kov, O. A. Zolotovskii, V. I. Koroteev, R. Kh. Kurtmullaev, V. D. Masalov, and V. N. Semenov, Soo. Phys.-JETP Leu. 13, 139 (1971).

    ADS  Google Scholar 

  47. A. T. Altyntsev, B. N. Breizman, A. G. Es’kov, A. O. Zolotovsky, V. I. Koroteev, R. Kh. Kurtmullaev, V. L. Maslov, D. D. Ryutov, and V. N. Semenov, Nucl. Fusion Suppl., p. 161 (1972).

    Google Scholar 

  48. P. A. Miller and G. W. Kuswa, Phys. Rev. Lett. 30, 958 (1973).

    Article  ADS  Google Scholar 

  49. C. A. Kapetankos and D. A. Hammer, Appl. Phys. Lett. 23, 17 (1973).

    Article  ADS  Google Scholar 

  50. Yu. I. Abrashitov, V. S. Koidan, V. V. Konyukhov, V. M. Lagunov, V. N. Luk’yanov, and K. I. Mekler, Soo. Phys.-JETP Lett. 18, 395 (1973).

    ADS  Google Scholar 

  51. G. C. Goldenbaum, W. F. Dove, K. A. Gerber, and B. G. Logan, Phys. Rev. Lett. 32, 830 (1974); B. G. Logan, W. F. Dove, K. A. Gerber, and G. C. Goldenbaum, IEEE Trans. Plasma Sci. 2, 182 (1974).

    Article  ADS  Google Scholar 

  52. C. Ekdahl, M. Greenspan, R. E. Kribel, J. Sethian, and C. B. Wharton, Phys. Rev. Lett. 33, 346 (1974).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Miller, R.B. (1982). Propagation of Intense Beams in Plasma. In: An Introduction to the Physics of Intense Charged Particle Beams. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1128-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1128-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1130-0

  • Online ISBN: 978-1-4684-1128-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics