Skip to main content

Intense Electron and Ion Beam Generation

  • Chapter

Abstract

The development of the high-voltage pulsed power technology described in Chapter 1 has provided the capability for generating intense particle beams with power levels up to 1013 W for time durations of the order of 100 nsec. In order to take advantage of this capability it is necessary to have a good understanding of the important intense beam generation processes. The material in this chapter is devoted to a basic description of high-power diode phenomenology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Dushman, Phys. Rev 21, 623 (1923).

    Article  ADS  Google Scholar 

  2. A. L. Hughes and L. A. DuBridge, Photoelectric Phenomena, McGraw-Hill, New York (1932).

    Google Scholar 

  3. R. H. Good, Jr., and E. W. Müller, Handbuch der Physik, Vol. 21, Springer, Berlin (1956).

    Google Scholar 

  4. R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1929).

    Article  ADS  Google Scholar 

  5. L. W. Nordheim, Proc. R. Soc. London, Ser. A 121, 626 (1928).

    MATH  Google Scholar 

  6. L. W. Nordheim, Z. Phys. 30, 177 (1929).

    Google Scholar 

  7. W. Schottky, Z. Phys. 14, 63 (1923).

    Article  ADS  Google Scholar 

  8. S. P. Bugaev, E. A. Litvinov, G. A. Mesyats, and D. J. Proskurovskii, Soy. Phys. Usp. 18, 51 (1975).

    Article  ADS  Google Scholar 

  9. H. E. Tomaschke and D. Alpert, J. Vac. Sci. Technol. 4, 192 (1967).

    Article  ADS  Google Scholar 

  10. A. P. Komar, V. P. Sanchenko, and V. N. Shrednik, Sou. Phys. Dokl. 4, 1286 (1959).

    ADS  Google Scholar 

  11. G. A. Mesyats, G. P. Bazhenov, S. P. Bugaev, D. I. Proskurovskii, V. P. Rotshtein, and Ya. Ya. Yurike, Sou. Phys. J. 12, 688 (1969).

    Google Scholar 

  12. D. Alpert, D. A. Lee, E. M. Lyman, and H. E. Tomaschke, J. Vac. Sci. Technol. 1, 35 (1964).

    Article  ADS  Google Scholar 

  13. F. M. Charbonnier, C. J. Bennette, and L. W. Swanson, J. Appl. Phys. 38, 627 (1967).

    Article  ADS  Google Scholar 

  14. W. B. Nottingham, Phys. Rev. 59, 907 (1941).

    Article  ADS  Google Scholar 

  15. W. W. Dolan, W. P. Dyke, and S. K. Trolan, Phys. Rev. 91, 1054 (1953).

    Article  ADS  Google Scholar 

  16. W. P. Dyke, J. K. Trolan, E. E. Martin, and J. P. Barbour, Phys. Rev. 91, 1043 (1953).

    Article  ADS  Google Scholar 

  17. H. R. Jory and A. W. Trivelpiece, J. Appl. Phys. 40, 3294 (1969).

    Article  Google Scholar 

  18. I. Langmuir, Phys. Rev. 3 238 (1931).

    Google Scholar 

  19. R. K. Parker, R. E. Anderson, and C. V. Duncan, J. Appl. Phys. 45, 2463 (1974).

    Article  ADS  Google Scholar 

  20. F. Friedlander, R. Hechtel, H. R. Jory, and C. Mosher, Varian Associates Report No. DASA-2173, 1965.

    Google Scholar 

  21. D. DePackh, Naval Research Laboratory Radiation Project Progress Report Nos. 5 and 17, 1968.

    Google Scholar 

  22. J. M. Creedon, J. Appl. Phys. 46, 2946 (1975).

    Article  ADS  Google Scholar 

  23. L. Brillouin, Phys. Rev. 67, 260 (1945).

    Article  ADS  Google Scholar 

  24. M. Friedman and M. Ury, Rev. Sci. Instrum. 41, 1334 (1970).

    Article  ADS  Google Scholar 

  25. A. A. Kolomenskii, E. G. Krastelev, A. M. Maine, V. A. Papadichev, and S. G. Rot, Sou. Phys. Tech. Phys. Lett. 2, 265 (1976).

    Google Scholar 

  26. J. A. Nation and M. Read, Appl. Phys. Lett. 23, (1973).

    Google Scholar 

  27. G. S. Kino and N. Taylor, Trans. IRE ED-9, 1 (1962).

    Google Scholar 

  28. V. S. Voronin and A. N. Lebedev, Sou. Phys. Tech. Phys. 18, 1627 (1974).

    Google Scholar 

  29. M. Jones and L. Thode, Los Alamos Scientific Laboratory LA-UR-79–3107 (1979).

    Google Scholar 

  30. E. Ott, T. M. Antonsen, Jr., and R. V. Lovelace, Phys. Fluids 20, 1180 (1977).

    Article  ADS  Google Scholar 

  31. J. Chen and R. V. Lovelace, Phys. Fluids 21, 1623 (1978).

    Article  ADS  Google Scholar 

  32. R. B. Miller, K. R. Prestwich, J. W. Poukey, and S. L. Shope, J. Appl. Phys. 51, 3506 (1980).

    Article  ADS  Google Scholar 

  33. S. Humphries, Jr., Nucl. Fusion 20, 1549 (1980).

    Article  ADS  Google Scholar 

  34. S. Humphries, J. J. Lee, and R. N. Sudan, Appl. Phys. Lett. 25, 20 (1974).

    Article  ADS  Google Scholar 

  35. S. Humphries, J. J. Lee, and R. N. Sudan, J. Appl. Phys. 46, 187 (1975).

    Article  ADS  Google Scholar 

  36. T. M. Antonsen and E. Ott, Appl. Phys. Lett. 28, 424 (1976).

    Article  ADS  Google Scholar 

  37. J. M. Creedon, I. D. Smith, and D. S. Prono, Phys. Rev. Leu. 35, 91 (1975).

    Article  ADS  Google Scholar 

  38. D. S. Prono, J. M. Creedon, I. Smith, and N. Bergstrom, J. Appl. Phys. 46, 3310 (1975).

    ADS  Google Scholar 

  39. S. Humphries, Jr., R. N. Sudan, and L. Wiley, J. Appl. Phys. 47, 2382 (1976).

    Article  ADS  Google Scholar 

  40. J. Golden, T. J. Orzechowski, and G. Bekefi, J. Appl. Phys. 45, 3211 (1974).

    Article  ADS  Google Scholar 

  41. R. N. Sudan and R. V. Lovelace, Phys. Rev. Lett. 31, 1174 (1973).

    Article  ADS  Google Scholar 

  42. K. D. Bergeron, Appl. Phys. Lett. 28, 306 (1976).

    Google Scholar 

  43. T. M. Antonsen, Jr., and E. Ott, Phys. Fluids 19, 52 (1976).

    Article  ADS  Google Scholar 

  44. J. W. Poukey, J. Vac. Sci. Technol. 12, 1214 (1975).

    ADS  Google Scholar 

  45. S. A. Goldstein, R. C. Davidson, R. Lee, and J. G. Siambis, 1st Topical Conf. Elect. Beam Res. and Technol., Sandia National Laboratory, SAND76–5122, p. 218 (1975).

    Google Scholar 

  46. S. A. Goldstein, R. C. Davidson, J. G. Siambis, and R. Lee, Phys. Rev. Lett. 33, 1471 (1974).

    Article  ADS  Google Scholar 

  47. A. E. Blaugrund, G. Cooperstein, and S. A. Goldstein, 1st Topical Conf. Elect. Beam Res. and Technol., Sandia National Laboratory, SAND76–5122, p. 233 (1976).

    Google Scholar 

  48. S. A. Goldstein and R. Lee, Phys. Rev. Lett. 35, 1079 (1975).

    Article  ADS  Google Scholar 

  49. J. W. Poukey, 1st Topical Conf. Elect. Beam Res. and Technol., Sandia National Laboratory, SAND76–5I 22, p. 247 (1976).

    Google Scholar 

  50. S. Humphries, Plasma Phys. 19, 399 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Miller, R.B. (1982). Intense Electron and Ion Beam Generation. In: An Introduction to the Physics of Intense Charged Particle Beams. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1128-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1128-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1130-0

  • Online ISBN: 978-1-4684-1128-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics