Skip to main content

Hormonal Regulation of Sodium Chloride and Water Transport in Epithelia

  • Chapter
Biological Regulation and Development

Abstract

In higher animals, the regulation of the ionic composition of the extracellular and intracellular fluids is critically dependent on the control of net rates of ion and water movement across transporting epithelia. Thus, the control of ion and water absorption across the gut and kidney in mammals, and also the skin and urinary bladder in amphibians, plays a determining role in the maintenance of electrolyte and fluid homeostasis. In addition, the regulation of specific ion transport processes in secretory epithelia underlies the elaboration of fluid secretions, and also contributes to electrolyte balance in many species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramow, M., and Dratwa, M., 1974, Studies with cytochalasin B in the isolated rabbit collecting tubule. Possible role of microfilaments in vasopressin action, in: Colloque European de Physiologie Renate, p. 133, INSERM, Paris.

    Google Scholar 

  • Adelstein, R. A., Conti, M. A., Hathaway, D. R., and Klee, C. B., 1978, Phosphorylation of smooth muscle myosin light chain kinase by the catalytic subunit of adenosine 3′-5′-monophosphate-dependent protein kinase, J. Biol. Chem. 253: 8347.

    PubMed  CAS  Google Scholar 

  • Agus, Z. S., Puschett, J. B., Senesky, D., and Goldberg, M., 1971, Mode of action of parathyroid hormone and cyclic adenosine 3′-5′-monophosphate on renal tubular phosphate reabsorption in the dog, J. Clin. Invest. 50: 617.

    Article  PubMed  CAS  Google Scholar 

  • Al-Awqati, Q., Norby, L. H., Mueller, A., and Steinmetz, P. R., 1976, Characteristics of stimulation of H transport by aldosterone in turtle urinary bladder, J. Clin. Invest. 58: 351.

    Article  PubMed  CAS  Google Scholar 

  • Altura, B. M., and Altura, B. T., 1977, Vascular smooth muscle and neurohypophyseal hormones, Fed. Proc. 36: 1853.

    PubMed  CAS  Google Scholar 

  • Amos, L., 1977, Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules, J. Cell Biol. 72: 642.

    Article  PubMed  CAS  Google Scholar 

  • Andreoli, T. E., and Schafer, J. A., 1976, Mass transport across cell membranes: The effects of antidiuretic hormone on water and solute flows in epithelia, Annu. Rev. Physiol. 35: 451.

    Article  Google Scholar 

  • Andreoli, T. E., and Schafer, J. A., 1978, Principles of water and nonelectrolyte transport across membranes, in: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffmann, and D. D. Fanestil, eds.), pp. 165 - 184, Plenum Press, New York.

    Chapter  Google Scholar 

  • Armstrong, W. M., Garcia-Diaz, J. F., O’Doherty, J., and O’Regan, M. G., 1979, Transmucosal Na+ electrochemical potential difference and solute accumulation in epithelial cells of the small intestine, Fed. Proc. 38: 2722.

    PubMed  CAS  Google Scholar 

  • Arruda, J. A. L., and Sabatini, S., 1980, Cholinergic modulation of water transport in the toad bladder, Am. J. Physiol. 239: F154.

    PubMed  CAS  Google Scholar 

  • Atlas, S. J., and Lin, S., 1978, Dihydrocytochalasin B. Biological effects and binding to 3T3 cells, J. Cell Biol. 76: 360.

    Article  PubMed  CAS  Google Scholar 

  • Ausiello, D. A., Hall, D. H., and Dayer, J. M., 1980, Modulation of cyclic AMP-dependent protein kinase by vasopressin and calcitonin in cultured porcine renal LLC-PK, cells, Biochem. J. 186: 773.

    PubMed  CAS  Google Scholar 

  • Barker, J. L., 1976, Peptides: Roles in neuronal excitability, Physiol. Rev. 56: 435.

    PubMed  CAS  Google Scholar 

  • Barnes, L. D., and Roberson, G. M., 1979, Tubulin and microtubules from bovine kidney: Purification, properties, and characterization of ligand binding, Arch. Biochem. Biophys. 196: 511.

    Article  PubMed  CAS  Google Scholar 

  • Beck, N. P., Kaneko, T., Zor, U., Field, J. B., and Davis, B. B., 1971, Effects of vasopressin and prostaglandin E, on the adenyl cyclase-cyclic 3′,5′-adenosine monophosphate system of the renal medulla of the rat, J. Clin. Invest. 50: 2461.

    Article  PubMed  CAS  Google Scholar 

  • Begg, D. A., and Rebhun, L. I., 1979, pH regulates the polymerization of actin in the sea urchin egg cortex, J. Cell Biol. 83: 241.

    Google Scholar 

  • Benjamin, W. B., and Singer, I., 1974, Aldosterone-induced protein in toad urinary bladder, Science 186: 269.

    Article  PubMed  CAS  Google Scholar 

  • Bentley, P. J., 1968, Amiloride: A potent inhibitor of sodium transport across the toad bladder, J. Physiol. (London) 195: 317.

    CAS  Google Scholar 

  • Bhalla, R. C., Webb, R. C., Singh, D., and Brock, T., 1978, Role of cyclic AMP in rat aortic microsomal phosphorylation and calcium uptake, Am. J. Physiol. 234:HSO8.

    Google Scholar 

  • Biber, T. U. L., 1971, Effect of changes in transepithelial transport on the uptake of sodium across the outer surface of the frog skin, J. Gen. Physiol. 58: 131.

    Article  PubMed  CAS  Google Scholar 

  • Billah, M. M., and Michell, R. H., 1979, Phosphatidylinositol metabolism in rat hepatocytes stimulated by glycogenolytic hormones, Biochem. J. 182: 661.

    PubMed  CAS  Google Scholar 

  • Binder, H. J., 1979, Mechanisms of Intestinal Secretion, Liss, New York.

    Google Scholar 

  • Boron, W. F., Russell, J. M., Brodwick, M. S., Keher, D. W., and Roos, A., 1978, Influence of cyclic AMP on intracellular pH regulation and chloride fluxes in barnacle muscle fibers, Nature (London) 276: 30.

    Article  Google Scholar 

  • Boulpaep, E. L., 1971, Electrophysiological properties of the proximal tubule: Importance of cellular and intercellular transport pathways, in: Electrophysiology of Epithelial Cells ( G. Giebisch, ed.), pp. 98 - 112, Symposia Medical Hoechst, F. K. Schattaer, Stuttgart.

    Google Scholar 

  • Bourguet, J., Chevalier, J., Parisi, M., and Ripoche, P., 1979, Hormonal Control of Epithelial Transport, INSERM, Paris.

    Google Scholar 

  • Brem, A., Tetreault, J., Eich, E., and Taylor, A., 1980, Intracellular pH and vasopressin response in toad bladder, Fed. Proc. 39: 1078.

    Google Scholar 

  • Brown, D., Grosso, A., and De Sousa, R. C., 1980, Isoproterenol-induced intramembrane particle aggregation and water flux in toad epidermis, Biochim. Biophys. Acta 596: 158.

    Google Scholar 

  • Brown, J. A., and Scott, W. N., 1976, Aldosterone induces the synthesis of messenger RNA in mucosal cells of the toad’s urinary bladder, Physiologist 19: 141.

    Google Scholar 

  • Burg, M. B., and Green, N., 1973, Function of the thick ascending limb of Henle’s loop, Am. J. Physiol. 224: 659.

    PubMed  CAS  Google Scholar 

  • Carasso, N., Favard, P., and Bourguet, J., 1973, Action de la cytochalasine B sur la réponse hydroosmotique et l’ultrastructure de la vessie urinaire de la grenouille, J. Microsc. (Paris) 18: 383.

    CAS  Google Scholar 

  • Chase, H., and Al-Awqati, Q., 1981, Sodium-calcium exchange in the basolateral membrane of the toad bladder, J. Gen. Physiol. 77: 693.

    Article  PubMed  Google Scholar 

  • Chevalier, J., Bourguet, J., and Hugon, J. S., 1974, Membrane associated particles: Distribution in frog urinary bladder epithelium at rest and after oxytocin treatment, Cell Tissue Res. 152: 129.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier, J., Bourguet, J., and Hugon, J. S., 1977, Actions combinées de la colchicine et de la cytochalsine B sur la permeabilite a l’eau et la distribution des particules intramembranaires de la vessie de grenouille, Int. Union Physiol. Sci. 13: 135.

    Google Scholar 

  • Chignell, C. F., and Titus, E., 1966, Effect of adrenal steroids on a Na+ and K+ requiring adenosine triphosphatase from rat kidney, J. Biol. Chem. 241: 5083.

    PubMed  CAS  Google Scholar 

  • Civan, M. M., 1970, Effects of active sodium transport on current-voltage relationship of toad bladder, Am. J. Physiol. 219: 234.

    PubMed  CAS  Google Scholar 

  • Civan, M. M., and DiBona, D. R., 1974, Pathways for movement of ions and water across toad urinary bladder. II. Site and mode of action of vasopressin, J. Membr. Biol. 19: 195.

    Article  PubMed  CAS  Google Scholar 

  • Civan, M. M., and DiBona, D. R., 1978, Pathways for movement of ions and water across toad urinary bladder. III. Physiologic significance of the paracellular pathway, J. Membr. Biol. 38: 359.

    Article  PubMed  CAS  Google Scholar 

  • Civan, M. M., and Frazier, H., 1968, The site of the stimulatory action of vasopressin on sodium transport in toad bladder, J. Gen. Physiol. 51: 589.

    Article  PubMed  CAS  Google Scholar 

  • Civan, M. M., and Hoffman, R. E., 1971, Effect of aldosterone on electrical resistance of toad bladder, Am. J. Physiol. 220: 324.

    PubMed  CAS  Google Scholar 

  • Claude, P., and Goodenough, D. A., 1973, Fracture faces of zonulae occludentes from “tight” and “leaky” epithelia, J. Cell Biol. 58: 390.

    Article  PubMed  CAS  Google Scholar 

  • Cohen, L. H., Muller, A., and Steinmetz, P. R., 1978, Inhibition of bicarbonate exit step in urinary acidification by a disulfonic stilbene, J. Clin. Invest. 61: 981.

    Article  PubMed  CAS  Google Scholar 

  • Condeelis, J. S., and Taylor, D. L., 1977, The contractile basis of amoeboid movement. V. The control of gelation, solation, and contraction in extracts from Dictyostelium discoideum, J. Cell Biol. 74: 901.

    Article  PubMed  CAS  Google Scholar 

  • Crabbé, J., 1961, Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro, J. Clin. Invest. 40: 2103.

    Article  PubMed  Google Scholar 

  • Crabbé, J., 1963, The Sodium Retaining Action of Aldosterone, Presses Academie Européene, Brussels.

    Google Scholar 

  • Crabbé, J., 1967, Suppression by amphotericin B of the effect exerted by aldosterone on active Na transport, Arch. Int. Physiol. Biochim. 75: 342.

    PubMed  Google Scholar 

  • Crabbé, J., and de Weer, P., 1969, Relevance of sodium transport pool measurements in toad bladder tissue for the elucidation of the mechanism whereby hormones stimulate active transport, Pfluegers Arch. 313: 197.

    Article  Google Scholar 

  • Crabbé, J., and Nagel, W., 1979, Increased sodium conductance of the apical surface of toad skin treated with aldosterone, J. Physiol. (London) 295: 47 P.

    Google Scholar 

  • Cunningham, E. B., 1968, The enhancement of phosphoryl transfer by adenosine 3′,5′-monophosphate in the presence of a membranous fraction from canine kidney, Biochim. Biophys. Acta 165: 574.

    Article  PubMed  CAS  Google Scholar 

  • Curran, P. F., Herrera, F. C., and Flanigan, W. J., 1963, The effect of Ca and antidiuretic hormone on Na transport across frog skin, J. Gen. Physiol. 46: 1011.

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert, A. W., and Shum, W. K., 1975, Effects of vasopressin and aldosterone on amiloride binding in toad bladder epithelial cells, Proc. R. Soc. London Ser. B 189: 543.

    Article  CAS  Google Scholar 

  • Cuthbert, A. W., and Shum, W. K., 1977, Does intracellular sodium modify permeability to sodium?, Nature (London) 266: 468.

    Article  CAS  Google Scholar 

  • Cuthbert, A. W., and Shum, W. K., 1978, Interdependence of the two borders in a sodium transporting epithelium. Possible regulation by the transport pool, J. Membr. Biol. 40: 221.

    Article  PubMed  CAS  Google Scholar 

  • Cuthbert, A. W., Fanelli, G. M., and Scriabine, A., 1979, Amiloride and Epithelial Sodium Transport, Urban & Schwarzenberg, Munich.

    Google Scholar 

  • Davis, W. L., Goodman, D. B. P., Schuster, R. J., Rasmussen, H., and Martin, J. H., 1974, Effects of cytochalasin B on the response of toad urinary bladder to vasopressin, J. Cell Biol. 63: 986.

    Article  PubMed  CAS  Google Scholar 

  • De Bermudez, L., and Windhager, E. E., 1975, Osmotically induced changes in electrical resistance of distal tubules of rat kidney, Am. J. Physiol. 229: 1536.

    PubMed  Google Scholar 

  • Dedman, J. R., Brinkley, B. R., and Means, A. R., 1979, Regulation of microfilaments and microtubules by calcium and cyclic AMP, Adv. Cyclic Nucleotide Res. 11: 131.

    CAS  Google Scholar 

  • Degnan, K. J., Karnaky, K. J., and Zadunaisky, J. A., 1977, Active chloride transport in the in vitro opercular skin of a teleost (Fundulus heteroclitus), a gill-like epithelium rich in chloride cells, J. Physiol. (London) 271: 155.

    CAS  Google Scholar 

  • DeLorenzo, R. J., and Greengard, P., 1973, Activation by adenosine 3′-5′ monophosphate of a membrane-bound phosphoprotein from toad bladder, Proc. Natl. Acad. Sci. USA 70: 1831.

    Article  PubMed  CAS  Google Scholar 

  • Dentler, W. L., Granett, S., and Rosenbaum, J. L., 1975, Ultrastructural localization of the high molecular weight proteins associated with in vitro-assembled brain microtubules, J. Cell Biol. 65: 237.

    Article  PubMed  CAS  Google Scholar 

  • De Sousa, R. C., Grosso, A., and Rufener, C., 1974, Blockade of the hydroosmotic effect of vasopressin by cytochalasin B, Experientia 30: 175.

    Article  PubMed  Google Scholar 

  • Diamond, J. M., 1977, The epithelial junction: Bridge, gate and fence, Physiologist 20: 10.

    PubMed  CAS  Google Scholar 

  • DiBona, D. R., 1979, Direct visualization of ADH-mediated transepithelial osmotic flow, in: Hormonal Control of Epithelial Transport (J. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche, eds.), pp. 195 - 205, INSERM, Paris.

    Google Scholar 

  • DiBona, D. R., and Mills, J. W., 1979, Distribution of Na+ pump sites in transporting epithelia, Fed. Proc. 38: 134.

    PubMed  CAS  Google Scholar 

  • DiBona, D. R., Civan, M. M., and Leaf, A., 1969, The cellular specificity of the effect of vasopressin on toad urinary bladder, J. Membr. Biol. 1: 79.

    Article  CAS  Google Scholar 

  • Dousa, T. P., and Barnes, L. D., 1974, Effects of colchicine and vinblastine on the cellular action of vasopressin in mammalian kidney. A possible role of microtubules, J. Clin. Invest. 54: 252.

    Article  PubMed  CAS  Google Scholar 

  • Dousa, T. P., and Valtin, H., 1976, Cellular actions of vasopressin in mammalian kidney, Kidney Int. 10: 46.

    Article  PubMed  CAS  Google Scholar 

  • Dousa, T. P., Sands, H., and Hechter, O., 1972, Cyclic AMP-dependent reversible phosphorylation of renal medullary plasma membrane protein, Endocrinology 91: 757.

    Article  PubMed  CAS  Google Scholar 

  • Dratwa, M., LeFurgey, A., and Tisher, C. C., 1979, Effect of vasopressin and serosal hypertonicity on toad urinary bladder, Kidney Int. 16: 695.

    Article  PubMed  CAS  Google Scholar 

  • Edelman, I. S., 1978, Candidate mediators in the action of aldosterone on Na+ transport, in: Membrane Transport Processes (J. F. Hoffman, ed.), Vol. 1, pp. 125 - 140, Raven Press, New York.

    Google Scholar 

  • Edelman, I. S., Bogoroch, R., and Porter, G. A., 1963, On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis, Proc. Natl. Acad. Sci. USA 50: 1169.

    Article  PubMed  CAS  Google Scholar 

  • Erlij, D., 1976, Solute transport across isolated epithelia, Kidney Int. 9: 76.

    Article  PubMed  CAS  Google Scholar 

  • Erlij, D., and Smith, M. W., 1973, Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport, J. Physiol. (London) 228: 221.

    CAS  Google Scholar 

  • Ernst, S. A., and Ellis, R. A., 1969, The development of surface specialization in the secretory epithelium of the avian salt gland in response to osmotic stress, J. Cell Biol. 40: 305.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, S. A., and Mills, J. W., 1977, Basolateral plasma membrane localization of ouabain-sensitive sodium transport sites in the secretory epithelium of the avian salt gland, J. Cell Biol. 75: 74.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, S. A., Goertemiller, C. C., and Ellis, R. A., 1967, The effect of salt regimens on the development of (Na+-K+)-dependent ATPase activity during the growth of salt glands in ducklings, Biochim. Biophys. Acta 135: 682.

    Google Scholar 

  • Essig, A., and Caplan, S. R., 1968, Energetics of active transport processes, Biophys. J. 8: 1434.

    Article  PubMed  CAS  Google Scholar 

  • Fanestil, D. D., and Edelman, I. S., 1966, Characteristics of the nuclear receptors for aldosterone, Proc. Natl. Acad. Sci. USA 56: 872.

    Article  PubMed  CAS  Google Scholar 

  • Fanestil, D. D., Porter, G. A., and Edelman, I. S., 1967, Aldosterone stimulation of sodium transport, Biochim. Biophys. Acta 135: 74.

    Article  CAS  Google Scholar 

  • Fanestil, D. D., Herman, T. S., Fimognari, G. M., and Edelman, I. S., 1968, Oxidative metabolism and aldosterone regulation of sodium transport, in: Regulatory Functions of Biological Membranes (J. Järnefelt, ed.), pp. 177 - 194, Elsevier, Amsterdam.

    Google Scholar 

  • Fänge, R., Schmidt-Nielsen, K., and Robinson, M., 1958, Control of secretion from the avian salt gland, Am. J. Physiol. 195: 321.

    PubMed  Google Scholar 

  • Farman, N., Kusch, M., and Edelman, I. S., 1978, Aldosterone receptor occupancy and sodium transport in the urinary bladder of Bufo marinus, Am. J. Physiol. 235: C90.

    PubMed  CAS  Google Scholar 

  • Farquhar, M. G., and Palade, G. E., 1963, Junctional complexes in various epithelia, J. Cell Biol. 17: 375.

    Article  PubMed  CAS  Google Scholar 

  • Feldman, D., Funder, J. W., and Edelman, I. S., 1972, Subcellular mechanisms in the action of adrenal steroids, Am. J. Med. 53: 545.

    Article  PubMed  CAS  Google Scholar 

  • Field, M., 1971, Ion transport in rabbit ileal mucosa. II. Effects of cyclic 3′,5′-AMP, Am. J. Physiol. 221: 992.

    PubMed  CAS  Google Scholar 

  • Field, M., 1979, Intracellular mediators of secretion in the small intestine, in: Mechanisms of Intestinal Secretion ( H. J. Binder, ed.), pp. 83 - 91, Liss, New York.

    Google Scholar 

  • Field, M., Karnaky, K. J., Smith, P. L., Bolton, J. E., and Kinter, W. B., 1978, Ion transport across isolated intestinal mucosa of the winter flounder, Pseudopleuronectes americanus. I. Functional and structural properties of cellular and paracellular pathways for Na and Cl, J. Membr. Biol. 41: 265.

    Article  PubMed  CAS  Google Scholar 

  • Fimognari, G. M., Porter, G. A., and Edelman, I. S., 1967, The role of tricarboxylic acid cycle in the action of aldosterone on sodium transport, Biochim. Biophys. Acta 135: 89.

    Article  CAS  Google Scholar 

  • Finkelstein, A., 1976, Nature of the water permeability increase induced by antidiuretic hormone (ADH) in toad urinary bladder and related tissues, J. Gen. Physiol. 68: 137.

    Article  PubMed  CAS  Google Scholar 

  • Finkelstein, A., 1978, Lipid bilayer membranes: Their permeability properties as related to those of cell membranes, in: Physiology of Membrane Disorders ( T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), pp. 205 - 216, Plenum Press, New York.

    Chapter  Google Scholar 

  • Finkelstein, A., and Rosenberg, P. A., 1979, Single-file transport: Implication for ion and water movement through gramicidin A channels, in: Membrane Transport Processes ( C. F. Stevens and R. W. Tsien, eds.), pp. 73 - 88, Raven Press, New York.

    Google Scholar 

  • Finn, A. L., 1971, The kinetics of sodium transport in the toad bladder. II. Dual effects of vasopressin, J. Gen. Physiol. 57: 349.

    Article  PubMed  CAS  Google Scholar 

  • Finn, A. L., 1975, Action of ouabain on sodium transport in toad urinary bladder. Evidence for two pathways for sodium entry, J. Gen. Physiol. 65: 503.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher, G. L., Stainer, I. M., and Holmes, W. N., 1967, Sequential changes in the adenosine triphosphatase activity and the electrolyte excretion capacity of the nasal glands of the duck (Anas platyrhynchos) during the period of adaptation to hypertonie saline, J. Exp. Biol. 47: 375.

    PubMed  CAS  Google Scholar 

  • Flores, J., Witkum, P. A., Beckman, B., and Sharp, G. W. G., 1975, Stimulation of osmotic water flow in toad bladder by prostaglandin E„ J. Clin. Invest. 56: 256.

    Article  PubMed  CAS  Google Scholar 

  • Forrest, J. N., Cohen, A. D., Schon, D. A., and Epstein, F. H., 1973a, Na transport and Na-K-ATPase in gills during adaptation to sea water: Effect of cortisol, Am. J. Physiol. 224: 709.

    PubMed  CAS  Google Scholar 

  • Forrest, J. N., MacKay, W. C., Gallagher, B., and Epstein, F. H., 19736, Plasma cortisol response to salt water adaptation in the American eel Anguilla rostrata, Am. J. Physiol. 224: 714.

    Google Scholar 

  • Forster, R. P., 1973, Comparative vertebrate physiology and renal concepts, in: Handbook of Physiology, Section 8 ( J. Orloff and R. W. Berliner, eds.), pp. 161 - 184, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Frazier, H. S., Dempsey, E. F., and Leaf, A., 1962, Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin, J. Gen. Physiol. 45: 529.

    Article  PubMed  CAS  Google Scholar 

  • Frindt, G., and Burg, M. B., 1972, Effect of vasopressin on sodium transport in renal cortical collecting tubules, Kidney Int. 1: 224.

    Article  PubMed  CAS  Google Scholar 

  • Frindt, G., Windhager, E. E., and Taylor, A., 1979, Inhibition of vasopressin (VP) induced hydro-osmotic effect in isolated perfused collecting tubules at low peritubular Na-concentration, Kidney Int. 16: 814.

    Google Scholar 

  • Frizzell, R. A., 1979, Autoregulation of amiloride-sensitive sodium entry in mammalian colon, in: Amiloride and Epithelial Sodium Transport ( A. W. Cuthbert, G. M. Fanelli, and A. Scriabine, eds.), pp. 145 - 154, Urban & Schwarzenberg, Munich.

    Google Scholar 

  • Frizzell, R. A., and Schultz, S. G., 1978, Effect of aldosterone on ion transport by rabbit colon in vitro, J. Membr. Biol. 39: 1.

    Article  CAS  Google Scholar 

  • Frizzell, R. A., Dugas, M. C., and Schultz, S. G., 1975, Sodium chloride transport by rabbit gallbladder, J. Gen. Physiol. 65: 769.

    Article  PubMed  CAS  Google Scholar 

  • Frizzell, R. A., Koch, M. J., and Schultz, S. G., 1976, Ion transport by rabbit colon. I. Active and passive components, J. Membr. Biol. 27: 297.

    Article  PubMed  CAS  Google Scholar 

  • Frizzell, R. A., Field, M., and Schultz, S. G., 1979, Sodium-coupled chloride transport by epithelial tissues, Am. J. Physiol. 236: F1.

    PubMed  CAS  Google Scholar 

  • Frömter, E., and Diamond, J., 1972, Route of passive ion permeation in epithelia, Nature New Biol. 235: 9.

    Article  PubMed  Google Scholar 

  • Ganote, C. E., Grantham, J. J., Moses, H. L., Burg, M. B., and Orloff, J., 1968, Ultrastructural studies of vasopressin effect on isolated perfused renal collecting tubules of the rabbit, J. Cell Biol. 36: 355.

    Article  PubMed  CAS  Google Scholar 

  • Giebisch, G., 1979, Renal potassium transport, in: Membrane Transport in Biology ( G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), pp. 215 - 298, Springer-Verlag, Berlin.

    Google Scholar 

  • Gmaj, P., Murer, H., and Kinne, R., 1979. Calcium ion transport across plasma membranes isolated from rat kidney cortex, Biochem. J. 178: 549.

    PubMed  CAS  Google Scholar 

  • Goodman, D. B. P., Allen, J. E., and Rasmussen, H., 1969, The mechanism of action of aldosterone, Proc. Natl. Acad. Sci USA 69: 330.

    Article  Google Scholar 

  • Goodman, D. B. P., Allen, J. E., and Rasmussen, H., 1971, Studies on the mechanism of action of aldosterone: Hormone-induced changes in lipid metabolism, Biochemistry 10: 3825.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, D. B. P., Wang, M., and Rasmussen, H., 1975, Aldosterone induced membrane phospholipid fatty acid metabolism in the toad urinary bladder, Biochemistry 14: 2803.

    Article  PubMed  CAS  Google Scholar 

  • Gorski, J., Toft, D., Shyamala, G., Smith, D., and Notides, A., 1968, Hormone receptors: Studies on the interaction of estrogen with the uterus, Recent Prog. Horm. Res. 24: 45.

    PubMed  CAS  Google Scholar 

  • Grantham, J. J., 1970, Vasopressin: Effect on deformability of urinary surface of collecting duct cells, Science 168: 1093.

    Article  PubMed  CAS  Google Scholar 

  • Grantham, J. J., 1974, Action of antidiuretic hormone in the mammalian kidney, in: Kidney and Urinary Tract Physiology ( K. Thurau, ed.), pp. 247 - 272, Butterworths, London.

    Google Scholar 

  • Grantham, J. J., and Burg, M. B., 1966, Effect of vasopressin and cyclic AMP on permeability of isolated collecting tubules, Am. J. Physiol. 211: 255.

    PubMed  CAS  Google Scholar 

  • Grantham, J. J., and Orloff, J., 1968, Effect of prostaglandin E, on the permeability response of the isolated collecting tubule to vasopressin, adenosine 3′,5′-monophosphate, and theophylline, J. Clin. Invest. 47: 1154.

    Article  PubMed  CAS  Google Scholar 

  • Greengard, P., 1979, Cyclic nucleotides, phosphorylated proteins, and the nervous system, Fed. Proc. 38: 2208.

    PubMed  CAS  Google Scholar 

  • Grimm-Jorgensen, Y., and Voûte, C. L., 1979, A possible role of thyrotropin releasing hormone in the seasonal adaptation of salt transport in the frog, in: Hormonal Control of Epithelial Transport ( J. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche, eds.), pp. 359 - 368, INSERM, Paris.

    Google Scholar 

  • Grinstein, S., and Erlij, D., 1978, Intracellular calcium and the regulation of sodium transport in the frog skin, Proc. R. Soc. London Ser. B 202: 353.

    Article  CAS  Google Scholar 

  • Grinstein, S., Candia, O., and Erlij, D., 1978, Nonhormonal mechanisms for the regulation of transepithelial sodium transport: The roles of surface potential and cell calcium, J. Membr. Biol. 40: 261.

    Article  PubMed  CAS  Google Scholar 

  • Grisham, L. M., and Wilson, L., 1973, Antimitotic action of griseofulvin does not involve disruption of microtubules, Nature (London) 244: 294.

    Article  CAS  Google Scholar 

  • Gronowicz, G., Masur, S. K., and Holtzman, E., 1980, Quantitative analysis of exocytosis and endocytosis in the hydroosmotic response of toad bladder, J. Membr. Biol. 52: 221.

    Article  PubMed  CAS  Google Scholar 

  • Gulyassy, P. F., and Edelman, I. S., 1965, Effect of pH and theophylline on uptake, elution and antidiuretic action of cyclic AMP, Am. J. Physiol. 212: 740.

    Google Scholar 

  • Hall, D. A., 1979, Possible role of vasopressin in regulating solute transport in mouse medullary thick ascending limb of Henle’s loop, Clin. Res. 27: 416A.

    Google Scholar 

  • Hall, D., Taylor, A., and Maffly, R., 1974, Inhibition of vasopressin action by colchicine, Kidney Int. 6: 49a.

    Google Scholar 

  • Handler, J. S., and Orloff, J., 1973, The mechanism of action of antidiuretic hormone, in: Handbook of Physiology, Section 8 ( J. Orloff and R. W. Berliner, eds.), pp. 791 - 814, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Handler, J. S., and Preston, A. S., 1976, Study of enzymes regulating vasopressin-stimulated cyclic AMP metabolism in separated mitochondria-rich and granular epithelial cells of toad urinary bladder, J. Membr. Biol. 26: 43.

    Article  PubMed  CAS  Google Scholar 

  • Handler, J. S., Butcher, R. W., Sutherland, E. W., and Orloff, J., 1965, The effect of vasopressin and of theophylline on the concentration of adenosine 3′,5′-phosphate in the urinary bladder of the toad, J. Biol. Chem. 240: 4524.

    PubMed  CAS  Google Scholar 

  • Handler, J. S., Bensinger, R., and Orloff, J., 1968, Effect of adrenergic agents on toad bladder response to ADH, 3′,3′ AMP, and theophylline, Am. J. Physiol. 215: 1024.

    PubMed  CAS  Google Scholar 

  • Handler, J. S., Preston, A. S., and Orloff, J., 1969, Effect of adrenal steroid hormones on the response of the toad’s urinary bladder to vasopressin, J. Clin. Invest. 48: 823.

    Article  PubMed  CAS  Google Scholar 

  • Handler, J. S., Preston, A. S., and Orloff, J., 1972, Effect of ADH, aldosterone, ouabain, and amiloride on toad bladder epithelial cells, Am. J. Physiol. 222: 1071.

    PubMed  CAS  Google Scholar 

  • Handler, J. S., Strewler, G. J., and Orloff, J., 1977, Role of protein synthesis and phosphoprotein metabolism in cellular response to vasopressin, in: Disturbances in Body Fluid Osmolality (T. E. Andreoli, J. J. Grantham, and F. C. Rector, Jr., eds.), pp. 85 - 95, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Hardy, M. A., 1978, Intracellular calcium as a modulator of transepithelial permeability to water in frog urinary bladder, J. Cell Biol. 76: 787.

    Article  PubMed  CAS  Google Scholar 

  • Harmanci, M. C., Kachadorian, W. A., Valtin, H., and DiScala, V. A., 1978, Antidiuretic hormone-induced intramembraneous alterations in mammalian collecting ducts, Am. J. Physiol. 235: F440.

    CAS  Google Scholar 

  • Haslam, R. J., and Rosson, G. M., 1972, Aggregation of human blood platelets by vasopressin, Am. J. Physiol. 223: 958.

    PubMed  CAS  Google Scholar 

  • Hays, R. M., 1976, Antidiuretic hormone and water transfer, Kidney Int. 9: 223.

    Article  PubMed  CAS  Google Scholar 

  • Hays, R. M., and Leaf, A., 1962, Studies on the movement of water through the isolated toad bladder and its modification by vasopressin, J. Gen. Physiol. 45: 905.

    Article  PubMed  CAS  Google Scholar 

  • Hays, R. M., Carvounis, C. P., Franki, N., and Levine, S. D., 1979, Water permeation in epithelial tissues: Current concepts, in: Hormonal Control of Epithelial Transport ( J. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche, eds.), pp. 281 - 288, INSERM, Paris.

    Google Scholar 

  • Heinz, E., 1972, Na-Linked Transport of Organic Solutes, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Hems, D. A., and Whitton, P. D., 1973, Stimulation by vasopressin of glycogen breakdown and gluconeogenesis in the perfused rat liver, Biochem. J. 136: 705.

    PubMed  CAS  Google Scholar 

  • Hendler, E. D., Toretti, J., Kupor, L., and Epstein, F. H., 1972, Effects of adrenalectomy and hormone replacement on Na-K-ATPase in renal tissue, Am. J. Physiol. 222: 754.

    PubMed  CAS  Google Scholar 

  • Herman, T. S., Fimognari, G. M., and Edelman, I. S., 1968, Studies on renal aldosterone binding proteins, J. Biol. Chem. 243: 3849.

    PubMed  CAS  Google Scholar 

  • Hill, J. H., Cortas, N., and Walser, M., 1973, Aldosterone action and sodium and potassium activated adenosine triphosphatase in toad bladder, J. Clin. Invest. 52: 185.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmann, N., Thees, M., and Kinne, R., 1976, Phosphate transport by isolated renal brush border vesicles, Pfluegers Arch. 362: 147.

    Article  CAS  Google Scholar 

  • Hogben, C. A. M., 1955, Active transport of chloride by isolated frog gastric epithelium. Origin of the gastric mucosal potential, Am. J. Physiol. 180: 641.

    PubMed  CAS  Google Scholar 

  • Holmes, W. N., Phillips, J. G., and Butler, D. G., 1961, The effect of adrenocortical steroids on the renal and extra renal responses of the domestic duck (Anas platyrhynchos) after hypertonic salt loading, Endocrinology 69: 483.

    Article  PubMed  CAS  Google Scholar 

  • Humbert, F., Montesano, R., Grosso, A., De Sousa, R. C., and Orci, L., 1977, Particle aggregates in plasma and intracellular membranes of toad bladder (granular cell), Experientia 33: 1364.

    Article  PubMed  CAS  Google Scholar 

  • Imbert, M., Chabardes, D., Montegut, M., Cuqre, A., and Morel, F., 1975, Adenylate cyclase activity along the rabbit nephron as measured in single isolated segments, Pfluegers Arch. 354: 213.

    Article  CAS  Google Scholar 

  • Iyengar, R., Lepper, K. G., and Mailman, D., 1976, Involvement of microtubules and microfilaments in the action of vasopressin in canine renal medulla, J. Supramol. Struct. 5: 521.

    Article  PubMed  CAS  Google Scholar 

  • Jacobson, H. R., 1979, Altered permeability in the proximal tubule response to cyclic AMP, Am. J. Physiol. 236: F71.

    PubMed  CAS  Google Scholar 

  • Janacek, K., and Rybova, R., 1970, Nonpolarized frog bladder preparation. The effects of oxytocin, Pfluegers Archiv. 318: 294.

    Article  PubMed  CAS  Google Scholar 

  • Jard, S., and Bastide, F., 1970, A cyclic AMP-dependent protein kinase from frog bladder epithelial cells, Biochem. Biophys. Res. Commun. 39: 559.

    Article  PubMed  CAS  Google Scholar 

  • Jard, S., and Bockaert, J., 1975, Stimulus-response coupling in neurohypophyseal peptide target cells, Physiol. Rev. 55: 489.

    PubMed  CAS  Google Scholar 

  • Jensen, E. V., 1968, A two-step mechanism for the interaction of estradiol with the rat uterus, Proc. Natl. Acad. Sci. USA 59: 632.

    Article  PubMed  CAS  Google Scholar 

  • Jorgensen, P. L., 1969, Regulation of (Na+-K+)-activated ATP hydrolyzing enzyme in the rat kidney. II. The effect of aldosterone on the activity in kidneys of adrenalectomized rats, Biochim. Biophys. Acta 192: 326.

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Wade, J. B., and DiScala, V. A., 1975, Vasopressin: Induced structural change in toad bladder luminal membrane, Science 190: 67.

    Article  PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Ellis, S. J., and Muller, J., 1979a, Possible roles for microtubules and microfilaments in ADH action on toad urinary bladder, Am. J. Physiol. 236: F14.

    PubMed  CAS  Google Scholar 

  • Kachadorian, W. A., Muller, J., Rudich, S. W., and DiScala, V. A., 1979b, On the possibility that ADHinduced intramembranous particle aggregates contain sites for water flow, in: Hormonal Control of Epithelial Transport U. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche,), pp. 139 - 146, INSERM, Paris.

    Google Scholar 

  • Keppens, S., Vandenheede, J. R., and DeWulf, H., 1977, On the role of calcium as second messenger in liver for the hormonally induced activation of glycogen phosphorylase, Biochim. Biophys. Acta 496: 448.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, G., and Spring, K. R., 1979, Luminal Na+ entry in Necturus proximal tubule, Am. J. Physiol. 236: F295.

    PubMed  CAS  Google Scholar 

  • Kirchberger, M. A., Witkum, P., and Sharp, G. W. G., 1971, On the similarity of the effects of aldosterone and adenosine 3′,3′ phosphate on Na+ transport and glucose metabolism in the toad bladder, Biochim. Biophys. Acta 241: 876.

    Article  PubMed  CAS  Google Scholar 

  • Kirchberger, M. A., Schwartz, I. L., and Walter, R., 1972, Cyclic 3′,5′-AMP-dependent protein kinase activity in toad bladder eipthelium, Proc. Soc. Exp. Biol. Med. 140: 657.

    PubMed  CAS  Google Scholar 

  • Kirschner, L. B., 1980, Comparison of vertebrate salt-excreting organs, Am. J. Physiol. 238: R219.

    PubMed  CAS  Google Scholar 

  • Kirsten, E., Kirsten, R., Leaf, A., and Sharp, G. W. G., 1968, Increased activity of enzymes of the tricarboxylic acid cycle in response to aldosterone in the toad bladder, Pfluegers Arch. 300: 213.

    Article  CAS  Google Scholar 

  • Kirsten, E., Kirsten, R., and Sharp, G. W. G., 1970, Effects of sodium transport stimulating substances on enzyme activities in the toad bladder, Pfluegers Arch. 316: 26.

    Article  CAS  Google Scholar 

  • Kirsten, R., and Kirsten, E., 1972, Redox state of pyridine nucleotides in renal response to aldosterone, Am. J. Physiol. 223: 229.

    PubMed  CAS  Google Scholar 

  • Klein, I., Willingham, M., and Pastan, I., 1978, A high molecular weight phosphoprotein in cultured fibroblasts that is associated with polymerized tubulin, Exp. Cell Res. 114: 229.

    Article  PubMed  CAS  Google Scholar 

  • Klyce, S. D., and Wong, R. K. S., 1977, Site and mode of adrenaline action on chloride transport across the rabbit corneal epithelium, J. Physiol. (London) 266: 777.

    CAS  Google Scholar 

  • Koefoed-Johnsen, V., and Ussing, H. H., 1953, The contributions of diffusion and flow to the passage of D20 through living membranes, Acta Physiol. Scand. 28: 60.

    Article  PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen, V., and Ussing, H. H., 1958, The nature of the frog skin potential, Acta Physiol. Scand. 42: 298.

    Article  PubMed  CAS  Google Scholar 

  • Kristensen, P., 1978, Effect of amiloride on chloride transport across amphibian epithelia, J. Membr. Biol. 40: 167.

    Article  PubMed  CAS  Google Scholar 

  • Kriz, B., and Kriz, W., 1979, Structural analysis of the rabbit kidney, Adv. Anat. Embryol. Cell Biol. 56:1. Kusch, M., Farman, N., and Edelman, I. S., 1978, Binding of aldosterone to cytoplasmic and nuclear receptors of the urinary bladder epithelium of Bufo marinus, Am. J. Physiol. 235: C82.

    Google Scholar 

  • Landon, E. F., Jazab, N., and Forte, L., 1966, Aldosterone and sodium-potassium dependent ATPase activity of rat kidney membranes, Am. J. Physiol. 211: 1050.

    PubMed  CAS  Google Scholar 

  • Law, P. Y., and Edelman, I. S., 1978a, Effect of aldosterone on incorporation of amino acids into renal medullary proteins, J. Membr. Biol. 41: 15.

    Article  PubMed  CAS  Google Scholar 

  • Law, P. Y., and Edelman, I. S., 1978b, Induction of citrate synthase by aldosterone in the rat kidney, J. Membr. Biol. 41: 41.

    Article  PubMed  CAS  Google Scholar 

  • Leaf, A., 1965, Transepithelial transport and its hormonal control in toad bladder, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 56: 216.

    Article  CAS  Google Scholar 

  • Lee, C. O., and Armstrong, W. M., 1972, Activities of sodium and potassium ions in epithelial cells of small intestine, Science 175: 1261.

    Article  PubMed  CAS  Google Scholar 

  • Lee, C. O., Taylor, A., and Windhager, E. E., 1980, Cytosolic calcium ion activities in epithelial cells of Necturus kidney, Nature (London) 287: 859.

    Article  CAS  Google Scholar 

  • Lewis, S. A., and Diamond, J. M., 1976, Na+ transport by rabbit urinary bladder, a tight epithelium, J. Membr. Biol. 28: 1.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, S. A., Eaton, D. C., and Diamond, J. M., 1976, The mechanism of Na+ transport by rabbit urinary bladder, J. Membr. Biol. 28: 41.

    Article  PubMed  CAS  Google Scholar 

  • Li, J. H. -Y., Palmer, L. G., Edelman, I. S., and Lindemann, B., 1982, The role of sodium-channel density in the natriferic response of the toad urinary bladder to an antidiuretic hormone, J. Membr. Biol. 64: 77.

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein, N. S., and Leaf, A., 1965, Effect of amphotericin B on the permeability of the toad bladder, J. Clin. Invest. 44: 1328.

    Article  PubMed  CAS  Google Scholar 

  • Lien, E. L., Goodman, D. B. P., and Rasmussen, H., 1975, Effects of an acetyl-coenzyme A carboxylase inhibitor and a sodium sparing diuretic on aldosterone-stimulated sodium transport, lipid synthesis and phospholipid fatty acid composition in the toad urinary bladder, Biochemistry 14: 2749.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, B., and Van Driessche, W., 1977, Sodium specific membrane channels of frog skin are pores: Current fluctuations reveal high turnover, Science 195: 292.

    Article  PubMed  CAS  Google Scholar 

  • Lindemann, B., and Voûte, C., 1976, Structure and function of the epidermis, in: Frog Neurobiology ( R. Llinas and W. Precht, eds.), p. 198, Springer-Verlag, Berlin.

    Google Scholar 

  • Lipton, P., and Edelman, I. S., 1971, Effects of aldosterone and vasopressin on electrolytes of toad bladder epithelial cells, Am. J. Physiol. 221: 773.

    Google Scholar 

  • Liu, A. Y. -C., and Greengard, P., 1974, Aldosterone-induced increase in protein phosphatase activity in the toad bladder, Proc. Natl. Acad. Sci. USA 71: 3869.

    Article  PubMed  CAS  Google Scholar 

  • Lorenzen, M., Taylor, A., and Windhager, E. E., 1980, pH dependence of cAMP-induced changes in hydraulic conductance (Le) of isolated perfused rabbit collecting tubules, Fed. Proc. 39: 1078a.

    Google Scholar 

  • Luetscher, J. A., 1956, Studies of aldosterone in relation to water and electrolyte balance in man, Recent Frog. Horm. Res. 12: 175.

    Google Scholar 

  • Macknight, A. D. C., 1977, Contribution of mucosal chloride to chloride in toad bladder epithelial cells, J. Membr. Biol. 36: 55.

    Article  PubMed  CAS  Google Scholar 

  • Macknight, A. D. C., Leaf, A., and Civan, M. M., 1971, Effects of vasopressin on the water and ionic composition of toad bladder epithelial cells, J. Membr. Biol. 6127.

    Google Scholar 

  • Macknight, A. D. C., DiBona, D. R., and Leaf, A., 1980, Sodium transport across toad urinary bladder: A model “tight” epithelium, Physiol. Rev. 60: 615.

    PubMed  CAS  Google Scholar 

  • MacRobbie, E. A. C., and Ussing, H. H., 1961, Osmotic behaviour of the epithelial cells of frog skin, Acta Physiol. Scand. 53: 348.

    Article  PubMed  CAS  Google Scholar 

  • Malkinson, A. M., Krueger, B. K., Rudolph, S. A., Casnellie, J. E., Haley, B. E., and Greengard, P., 1975, Widespread occurrence of a specific protein in vertebrate tissues and regulation by cyclic AMP of its endogenous phosphorylation and dephosphorylation, Metabolism 24: 331.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, R. L., and Wilson, L., 1978, Opposite end assembly and disassembly of microtubules at steady state in vitro, Cell 13: 1.

    Article  PubMed  CAS  Google Scholar 

  • Marumo, F., and Edelman, I. S., 1971, Effects of Ca and prostaglandin E, on vasopressin activation of renal adenyl cyclase, J. Clin. Invest. 50: 1613.

    Article  PubMed  CAS  Google Scholar 

  • Marver, D., Goodman, D., and Edelman, I. S., 1972, Relationship between renal cytoplasmic and nuclear aldosterone receptors, Kidney Int. 1: 210.

    Article  PubMed  CAS  Google Scholar 

  • Masur, S. K., Holtzman, E., and Walter, R., 1972, Hormone-stimulated exocytosis in the toad urinary bladder: Some possible implications for turnover of surface membranes, J. Cell Biol. 52: 211.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, N., Maetz, J., Chan, D. K. O., Forster, M., and Chester-Jones, I., 1967, Cortisol, a sodium excreting factor in the eel (Anguilla anguilla L.) adapted to sea water, Nature (London) 214: 1118.

    Article  CAS  Google Scholar 

  • Mills, J. W., and Malick, L. E., 1978, Mucosal surface morphology of the toad urinary bladder, J. Cell Biol. 77: 598.

    Article  PubMed  CAS  Google Scholar 

  • Morel, F., and Bastide, F., 1965, Action de l’ocytocine sur la composante active du transport de sodium par la peau de grenouille, Biochim. Biophys. Acta 94: 609.

    Article  CAS  Google Scholar 

  • Muller, J., Kachadorian, W. A., and DiScala, V. A., 1980, Evidence that ADH-stimulated intramembrane particle aggregates are transferred from cytoplasmic to luminal membranes in toad bladder epithelial cells, J. Cell Biol. 85: 83.

    Article  PubMed  CAS  Google Scholar 

  • Murer, H., Hopfer, U., and Kinne, R., 1976, Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney, Biochem. J. 154: 597.

    PubMed  CAS  Google Scholar 

  • Natos, A., Kachadorian, W., and Taylor, A., 1978, Vasopressin-like effects of the antimitotic agent griseofulvin, Kidney Int. 14: 772.

    Google Scholar 

  • Nellans, H. N., Frizzell, R. A., and Schultz, S. G., 1973, Coupled sodium—chloride influx across the brush border of rabbit ileum, Am. J. Physiol. 225: 467.

    PubMed  CAS  Google Scholar 

  • Omachi, R. S., Robbie, D. 1., Handler, J. S., and Orloff, J., 1974, Effects of ADH and other agents on cyclic AMP accumulation in toad bladder epithelium, Am. J. Physiol. 226: 1152.

    CAS  Google Scholar 

  • O’Neil, R. G., and Hetman, S. I., 1977, Transport characteristics of renal collecting tubules: Influences of DOCA and diet, Am. J. Physiol. 233: F544.

    PubMed  Google Scholar 

  • Orloff, J., Handler, J. S.,/and Preston, A. S., 1962, The similarity of effects of vasopressin, adenosine 3′,3′monophosphate (cyclic AMP) and theophylline on the toad bladder, J. Clin. Invest. 41: 702.

    CAS  Google Scholar 

  • Orloff, J., Handler, J. S., and Bergstrom, S., 1965, Effect of prostaglandin (PGE,) on the permeability response of toad bladder to vasopressin, theophylline and adenosine 3′,5′-monophosphate, Nature (London) 205: 314.

    Article  Google Scholar 

  • Oschman, J. L., Wall, B. J., and Gupta, B. L., 1974, Cellular basis of water transport, in: Transport at the Cellular Level (M. A. Sleigh and D. H. Jennings,), Symposia of the Society for Experimental Biology, Vol. 28, pp. 305 - 350, Cambridge University Press, Cambridge.

    Google Scholar 

  • Palmer, L. G., Lindemann, B., and Edelman, I. S., 1979, Hormonal and metabolic control of apical Na+ permeability in toad urinary bladder, Fed. Proc. 38: 243.

    Google Scholar 

  • Palmer, L. G., Edelman, I. S., and Lindemann, B., 1980, Current-voltage analysis of Apical Sodium Transport in Toad Urinary Bladder: Effects of Inhibitors of Transport and Metabolism, J. Membr. Biol. 57: 59.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L. G., Li, J. H. -Y., Lindemann, B., and Edelman, I. S., 1982, Aldosterone control of the density of sodium channels in the toad urinary bladder, J. Membr. Biol. 64: 91.

    Article  PubMed  CAS  Google Scholar 

  • Park, C. S., and Edelman, I. S., 1979, Effect of aldosterone on phosphorylation kinetics of (Na+, K+)-ATPase of toad urinary bladder, Fed Proc. 38: 240.

    Google Scholar 

  • Peachey, L. D., and Rasmussen, H., 1961, Structure of the toad’s urinary bladder as related to its physiology, J. Biophys. Biochem. Cytol. 10: 529.

    Article  PubMed  CAS  Google Scholar 

  • Pearl, M., and Taylor, A., 1979, Isolation and localization of actin-like protein from toad bladder epithelium, Fed. Proc. 39: 1241a.

    Google Scholar 

  • Phillips, J. G., Holmes, W. N., and Butler, D. G., 1961, The effect of total and subtotal adrenalectomy on the renal and extra-renal response of the domestic duck (Anas platyrhynchos) to saline loading, Endocrinology 69: 958.

    Article  PubMed  CAS  Google Scholar 

  • Pietras, R. J., and Wright, E. M., 1975, The membrane action of antidiuretic hormone (ADH) on toad urinary bladder, J. Membr. Biol. 22: 107.

    Article  PubMed  CAS  Google Scholar 

  • Quay, J. R., and Armstrong, W. M., 1969, Sodium and chloride transport by isolated bullfrog small intestine, Am. J. Physiol. 217: 694.

    PubMed  CAS  Google Scholar 

  • Rau, W. S., and Frömter, E., 1974, Electrical properties of the medullary collecting ducts of the golden hamster kidney. II. The transepithelial resistance, Pfluegers Arch. 351: 113.

    Article  CAS  Google Scholar 

  • Rawlins, F., Mateu, L., Fragachan, F., and Whittenbury, G., 1970, Isolated toad skin epithelium: Transport characteristics, Pfluegers Archiv. 316: 64.

    Article  PubMed  CAS  Google Scholar 

  • Reaven, E., Maffly, R. H., and Taylor, A., 1978, Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. III. Morphological studies on the content and distribution of micro-tubules in bladder epithelial cells, J. Membr. Biol. 40: 251.

    Article  PubMed  CAS  Google Scholar 

  • Rodbell, M., 1980, The role of hormone receptors and GTP-regulatory proteins in membrane transduction, Nature (London) 284: 17.

    Article  CAS  Google Scholar 

  • Roobol, A., Gull, K., and Pogson, C., 1977, Evidence that griseofulvin binds to a microtubule associated protein, FEBS Lett. 75: 149.

    Article  PubMed  CAS  Google Scholar 

  • Rossier, B. C., Wilce, P. A., and Edelman, I. S., 1974, Kinetics of RNA labeling in toad bladder epithelium: Effects of aldosterone and other steroids, Proc. Natl. Acad. Sci. USA 71: 3101.

    Article  PubMed  CAS  Google Scholar 

  • Rossier, B. C., Wilce, P. A., and Edelman, I. S., 1977, Spirolactone antagonism of aldosterone action on Na+ transport and RNA metabolism in toad bladder epithelium, J. Membr. Biol. 32: 177.

    Article  PubMed  CAS  Google Scholar 

  • Roy, C., Rajerison, R., Bockaert, J., and Jard, S., 1975, Solubilization of the [8—lysine]-vasopressin receptor and adenylate cyclase from pig kidney plasma membranes, J. Biol. Chem. 250: 7885.

    PubMed  CAS  Google Scholar 

  • Sahib, M. K., Schwartz, J. H., and Handler, J. S., 1978, Inhibition of toad urinary bladder sodium transport by carbamylcholine: Possible role of cyclic GMP, Am. J. Physiol. 235: F586.

    PubMed  CAS  Google Scholar 

  • Saito, T., and Essig, A., 1973, Effect of aldosterone on active and passive conductance and EN, in the toad bladder, J. Membr. Biol. 13: 1.

    Article  PubMed  CAS  Google Scholar 

  • Sapirstein, V. S., and Scott, W. N., 1973, Cyclic AMP and sodium transport. Quantitative and temporal relationship in toad urinary bladder, J. Clin. Invest. 52: 2379.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, W. H., 1961, Neurohypophyseal hormones, Physiol. Rev. 13: 225.

    CAS  Google Scholar 

  • Scarpa, A., and Carafoli, E., (eds.), 1978, Calcium Transport and Cell Function, Ann. N.Y. Acad. Sci. 307.

    Google Scholar 

  • Schafer, J. A., and Andreoli, T. E., 1978, The collecting duct, in: Physiology of Membrane Disorders (T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil,), pp. 707-737, Plenum Press, New York. Schlondorff, D., and Franki, N., 1980, Effect of vasopressin on cyclic AMP-dependent protein kinase in toad urinary bladder, Biochim. Biophys. Acta 628: 1.

    Google Scholar 

  • Schmidt, U., Schmid, H., Funk, B., and Dubach, U. C., 1973, The function of Na,K-ATPase in single portions of the rat nephron, Ann. N.Y. Acad. Sci. 242: 489.

    Google Scholar 

  • Schmidt, U., Schmid, J., Schmid, H., and Dubach, U. C., 1975, Sodium and potassium activated ATPase: A possible target of aldosterone, J. Clin. Invest. 55: 655.

    Google Scholar 

  • Schultz, I., and Ullrich, K. J., 1979, Transport processes in the exocrine pancreas, in: Membrane Transport in Biology ( G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), pp. 811 - 845, Springer-Verlag, Berlin.

    Google Scholar 

  • Schultz, S. G., 1978, Ion-coupled transport across biological membranes, in: Physiology of Membrane Disorders ( T. E. Andreoli, J. F. Hoffman, and D. D. Fanestil, eds.), pp. 273 - 284, Plenum Press, New York.

    Chapter  Google Scholar 

  • Schultz, S. G., and Curran, P. F., 1970, Coupled transport of sodium and organic solutes, Physiol. Rev. 50: 637.

    PubMed  CAS  Google Scholar 

  • Schultz, S. G., Frizzell, R. A., and Nellans, H. N., 1974, Ion transport by mammalian small intestine, Annu. Rev. Physiol. 36: 51.

    Article  CAS  Google Scholar 

  • Schwartz, G. J., and Burg, M. G., 1978, Mineralocorticoid effects on cation transport by cortical collecting tubules, Am. J. Physiol. 235: F576.

    PubMed  CAS  Google Scholar 

  • Schwartz, I. L., Shlatz, L. J., Kinne-Saffran, E., and Kinne, R., 1974, Target cell polarity and membrane phosphorylation in relation to the mechanism of action of antidiuretic hormone, Proc. Natl. Acad. Sci. USA 71: 2595.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, I. L., Huang, C. J., Reisman, L., Scalettar, E., Wyssbrod, H. R., Cort, J. H., Roth, G., Li, H. C., and Ripoche, P. A., 1979, Cyclic AMP mediated dephosphorylation in renal collecting duct epithelial cell plasma membrane: A substrate level phenomenon, in: Hormonal Control of Epithelial Transport ( J. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche, eds.), pp. 71 - 84, INSERM, Paris.

    Google Scholar 

  • Schwartz, M. J., and Kokko, J. P., 1978, The effect of aldosterone on the collecting duct response to antidiuretic hormone (ADH), Kidney Int. 14: 780.

    Google Scholar 

  • Scott, W. N., and Sapirstein, V. S., 1975, Identification of aldosterone-induced proteins in the toad’s urinary bladder, Proc. Natl. Acad. Sci. USA 72: 4056.

    Article  PubMed  CAS  Google Scholar 

  • Scott, W. N., Reich, I. M., Brown, J. A., Jr., and Yang, C. P. H., 1978, Comparison of toad bladder aldosterone-induced proteins and proteins synthesized in vitro using aldosterone-induced messenger RNA as template, J. Membr. Biol. 40: 213.

    PubMed  CAS  Google Scholar 

  • Scott, W. N., Reich, I. M., and Goodman, D. B. P., 1979, Inhibition of fatty acid synthesis prevents the incorporation of aldosterone-induced proteins into membranes, J. Biol. Chem. 254: 4957.

    PubMed  CAS  Google Scholar 

  • Sharp, G. W. G., and Leaf, A., 1964, Biological action of aldosterone in vitro, Nature (London) 202:1185. Sharp, G. W. G., and Leaf, A., 1966, Mechanism of action of aldosterone, Physiol. Rev. 46: 593.

    Google Scholar 

  • Sharp, G. W. G., and Leaf, A., 1973, Effects of aldosterone and its mechanism of action on sodium transport, in: Handbook of Physiology, Section 8 ( J. Orloff and R. W. Berliner, eds.), pp. 815 - 830, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Silva, P., Stoff, J., Field, M., Fine, L., Forrest, J. N., and Epstein, F. H., 1977, Mechanism of active chloride secretion by shark rectal gland: Role of Na-K-ATPase in chloride transport, Am. J. Physiol. 233: F298.

    PubMed  CAS  Google Scholar 

  • Sloboda, R. D., Rudolph, S. A., Rosenbaum, J. L., and Greengard, P., 1975, Cyclic AMP-dependent endogenous phosphorylation of a microtubule associated protein, Proc. Natl. Acad. Sci. USA 72: 177.

    Article  PubMed  CAS  Google Scholar 

  • Snart, R. S., 1972, The two-stage nature of the aldosterone response, J. Steroid Biochem. 3: 129.

    Article  PubMed  CAS  Google Scholar 

  • Spinelli, F., Grosso, A., and De Sousa, R. C., 1974, Effects of vasopressin and cytochalasin B on the apical membrane of the toad bladder and the collecting duct in the mammalian kidney, in: Colloque European Physiologie Renale, p. 195, INSERM, Paris.

    Google Scholar 

  • Spooner, P. M., and Edelman, I. S., 1975, Further studies on the effect of aldosterone on electrical resistance of toad bladder, Biochim. Biophys. Acta 406: 304.

    Article  PubMed  CAS  Google Scholar 

  • Spring, K. R., and Giebisch, G., 1977, Kinetics of Na+ transport in Necturus proximal tubule, J. Gen. Physiol. 70: 307.

    Article  PubMed  CAS  Google Scholar 

  • Spring, K. R., and Kimura, G., 1978, Chloride reabsorption by renal proximal tubules of Necturus, J. Membr. Biol. 38: 223.

    Google Scholar 

  • Staehelin, L. A., 1974, Structure and function of intercellular junctions, Int. Rev. Cytol. 39: 191.

    Article  PubMed  CAS  Google Scholar 

  • Stewart, D. J., Semple, E. W., Swart, G. T., and Sen, A. K., 1976, Induction of the catalytic protein of Na-KATPase in the salt gland of the duck, Biochim. Biophys. Acta 419: 150.

    Article  PubMed  CAS  Google Scholar 

  • Stoff, J. S., Handler, J. S., and Orloff, J., 1972, The effect of aldosterone on the accumulation of adenosine 3′,5′-cyclic monophosphate in toad bladder epithelial cells in response to vasopressin and theophylline, Proc. Natl. Acad. Sci. USA 69: 805.

    Article  PubMed  CAS  Google Scholar 

  • Stoff, J. S., Handler, J. S., Preston, A. S., and Orloff, J., 1973, The effect of aldosterone on cyclic nucleotide phosphodiesterase activity in toad urinary bladder, Life Sci. 13: 545.

    Article  CAS  Google Scholar 

  • Strittmatter, W. J., Hirata, F., and Axelrod, J., 1979a, Phospholipid methylation unmasks cryptic ß-adrenergic receptors in rat reticulocytes, Science 204: 1205.

    Article  PubMed  CAS  Google Scholar 

  • Strittmatter, W. J., Hirata, F., and Axelrod, J., 19796, Increased Cat+-ATPase activity associated with methylation of phospholipids in human erythrocytes, Biochem, Biophys. Res. Commun. 88: 147.

    Google Scholar 

  • Swaneck, G. E., Chu, L. L. H., and Edelman, I. S., 1970, Stereospecific binding of aldosterone to renal chromatin, J. Biol. Chem. 245: 5382.

    PubMed  CAS  Google Scholar 

  • Taylor, A., 1975, Effect of quinidine in the action of vasopressin, Fed. Proc. 34: 285.

    Google Scholar 

  • Taylor, A., 1977, Role of microtubules and microfilaments in the action of vasopressin, in: Disturbances in Body Fluid Osmolality ( T. E. Andreoli, J. J. Grantham, and F. C. Rector, eds.), pp. 97 - 125, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Taylor, A., 1981, Role of cytosolic calcium and sodium-calcium exchange in regulation of transepithtlial sodium and water absorption, in: Ion Transport by Epithelia ( S. G. Schultz, ed.), pp. 233 - 259, Raven Press, New York.

    Google Scholar 

  • Taylor, A., and Windhager, E. E., 1979, Possible role of cytosolic calcium and Na-Ca exchange in regulation of transepithelial sodium transport, Am. J. Physiol. 236: F505.

    PubMed  CAS  Google Scholar 

  • Taylor, A., Mamelak, M., Reaven, E., and Mafily, R., 1973, Vasopressin: Possible role of microtubules and microfilaments in its action, Science 181: 347.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, A., Mamelak, M., Golbetz, H., and Maffly, R., 1978, Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. I. Functional studies on the effects of antimitotic agents on the response to vasopressin, J. Membr. Biol. 40: 213.

    PubMed  CAS  Google Scholar 

  • Taylor, A. Eich, E., Pearl, M., and Brem, A., 1979, Role of cytosolic calcium and Na-Ca exchange in the action of vasopressin, in: Hormonal Control of Epithelial Transport ( J. Bourguet, J. Chevalier, M. Parisi, and P. Ripoche, eds.), pp. 167 - 174, INSERM, Paris.

    Google Scholar 

  • Taylor, A. N., 1974, In vitro phosphate transport in chick ileum: Effect of cholecalciferol, calcium, sodium and metabolic inhibitors, J. Nutr. 104: 489.

    PubMed  CAS  Google Scholar 

  • Ullrich, K. J., Capasso, G., Rumrich, G., Papavassiliou, F., and Kloss, S., 1977, Coupling between proximal tubular transport processes: Studies with ouabain, SITS and HCO3 -free solution, Pfluegers Arch. 368: 245.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1960, The alkali metal ions in isolated systems and tissues, in: The Alkali Metal Ions in Biology ( O. Eichler and A. Farah, eds.), p 195. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Ussing, H. H., and Windhager, E. E., 1964, Nature of shunt path and active sodium transport path through frog skin epithelium, Acta Physiol. Scand. 61: 484.

    PubMed  CAS  Google Scholar 

  • Verney, E. B., 1947, The antidiuretic hormone and the factors which determine its release, Proc. R. Soc. London Ser. B 135: 25.

    Article  CAS  Google Scholar 

  • Voûte, C. L., and Meier, W., 1978, The mitochondria-rich cell of frog skin as hormone-sensitive “shunt-path,” J. Membr. Biol. 40: 151.

    Article  PubMed  Google Scholar 

  • Wade, J. B., 1978, Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. III. Location, structure and vasopressin dependence of intramembrane particle arrays, J. Membr. Biol. 40: 281.

    Article  PubMed  CAS  Google Scholar 

  • Wade, J. B., 1980, Hormonal modulation of epithelial structure, in: Current Topics in Membranes and Transport ( F. Bonner and A. Kleinzeller, eds.), pp. 123–147, Academic Press, New York.

    Google Scholar 

  • Wade, J. B., 1981, Modulation of membrane structure in the toad urinary bladder by vasopressin, in: Water Transport across Epithelia ( H. H. Ussing, N. Bindslev, N. A. Lassen, and O. Sten-Knudsen, eds.), pp. 422–430, Munksgaard, Copenhagen.

    Google Scholar 

  • Wade, J. B., O’Neil, R. G., Pryor, J., and Boulpaep, E. L., 1979, Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones, J. Cell Biol. 81: 439.

    Article  PubMed  CAS  Google Scholar 

  • Welsh, M. J., and Frizzell, R. A., 1980, Localization of the site of fluid secretion in colonic mucosa, Fed. Proc. 39: 378.

    Google Scholar 

  • Wiesman, W., Sinha, S., and Klahr, S., 1977, Effects of ionophore A23187 on baseline and vasopressin stimulated sodium transport in the toad bladder, J. Clin. Invest. 59: 418.

    Article  Google Scholar 

  • Wiesman, W., Sinha, S., Yates, J., and Klahr, S., 1978, Cholinergic agents inhibit sodium transport across the isolated toad bladder, Am. J. Physiol. 235: F564.

    Google Scholar 

  • Wilce, P. A., Rossier, B. C., and Edelman, I. S., 1976, Actions of aldosterone on polyadenylated ribonucleic acid and Na+ transport in the toad bladder, Biochemistry 15: 4279.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, H. E., 1963, Mechanism of the antinatriuretic action of aldosterone, Biochem. Pharmacol. 12: 1449.

    Article  PubMed  CAS  Google Scholar 

  • Wills; N. K., Lewis, S. A., and Eaton, D. C., 1979, Active and passive properties of rabbit descending colon: A microelectrode and nystatin study, J. Membr. Biol. 45: 81.

    Article  Google Scholar 

  • Wilson, L., and Taylor, A., 1978, Evidence for involvement of microtubules in the action of vasopressin in toad urinary bladder. II. Colchicine-binding properties of toad bladder epithelial cell tubulin, J. Membr. Biol. 40: 237.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, L., Anderson, K., Grisham, L., and Chin, D., 1975, Biochemical mechanism of action of microtubule inhibitors, in: Microtubules and Microtubule Inhibitors (M. Borgers and M. de Brabander,), pp. 103113, North-Holland, Amsterdam.

    Google Scholar 

  • Windhager, E. E., 1979, Sodium chloride transport, in: Membrane Transport in Biology ( G. Giebisch, D. C. Tosteson, and H. H. Ussing, eds.), pp. 145–213, Springer-Verlag, Berlin.

    Google Scholar 

  • Windhager, E. E., Boulpaep, E. L., and Giebisch, G., 1967, Electrophysiological studies on single nephrons, in: Proceedings International Congress of Nephrology, pp. 35–47, Karger, Basel.

    Google Scholar 

  • Wright, E. M., 1977, Passive water transport across epithelia, in: Water Relations in Membrane Transport in Plants and Animals ( A. M. Jungreis, T. K. Hodges, A. Kleinzeller, and S. G. Schultz, eds.), pp. 199–213, Academic Press, New York.

    Google Scholar 

  • Yates, F. E., and Maran, J. W., 1974, Stimulation and inhibition of adrenocorticotropin release, in: Handbook of Physiology, Section 7: Endocrinology, Vol IV, Part 2 ( E. Knobil and W. H. Sawyer, eds.), pp. 367–404, American Physiological Society, Washington, D.C.

    Google Scholar 

  • Yuasa, S., Urakabe, S., Kimura, G., Shirai, D., Takamitsu, Y., Orita, Y., and Abe, H., 1975, Effect of colchicine on the osmotic water flow across the toad urinary bladder, Biochim. Biophys. Acta 413: 227.

    Google Scholar 

  • Zadunaisky, J. A., 1966, Active transport of chloride transport in the frog cornea, Am J. Physiol. 211: 506.

    PubMed  CAS  Google Scholar 

  • Zadunaisky, J. A., Lande, M. A., Chalfie, M., and Neufeld, A. H., 1973, Ion pumps in the cornea and their stimulation by epinephrine and cyclic AMP, Exp. Eye Res. 15: 577.

    Article  PubMed  CAS  Google Scholar 

  • Zusman, R. M., Keiser, H. R., and Handler, J. S., 1977, Vasopressin-stimulated prostaglandin E biosynthesis in the toad urinary bladder, J. Clin. Invest. 60: 1339.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Taylor, A., Palmer, L.G. (1982). Hormonal Regulation of Sodium Chloride and Water Transport in Epithelia. In: Goldberger, R.F., Yamamoto, K.R. (eds) Biological Regulation and Development. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1125-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1125-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1127-0

  • Online ISBN: 978-1-4684-1125-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics